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STATICALLY ADMISSIBLE STRESS FIELDS IN INCOMPRESSIBLE

|.-¢

Ia. A KAMENIARZH

A set of statically admissible stress fields must often be considered in problems of
the mechanics of a continuous medium. In particular, the extremums shouldbe sought
in this set in conformity with the Castigliano principle for the static limit co-
efficient of the theory of ideal plasticity. Two different sets of statically ad-
missible stresses are used for incompressible media. Their interrelation is known
only for kinematic conditions on the whole boundary of the body. An analogous re-
lation is established in this paper for the case of mixed boundary conditions, and
the possibility of its utilization is discussed.

Let a continuous medium fill the domain Q in R® (n=2,3), and let it be subjected to mass
forces with density f given in q, and a surface load with density q given on a part Sy of the
boundary of the domainQ, Furthermore, let

S, = BQ\S., S, = ag\gg ey 1Y
v >y A Ve Ly
where the bar denotes the closure in Rg», and the velocity is given on §, (for instance, §,
is clamped).
A stress field equilibrating the load (f,q) is called statically admissible; the equili-
brium conditions in the domain Q and on its boundary can be written in the form of equations
for the principle of virtual velocities /1/

§26.edz—Sde.r—quds=0 VveV (0.2)

Q

1 Y
eij:T(a:] ) =12 ...,n

where v is the set of virtual (trial) velocity fields, and z! are Cartesian coordinates in R™.
For incompressible media there are two natural possibilities for the selectionof v:Vi=
vi(Q, §,) is the set of smooth, i.e., belonging to C*(Q), solenoidal velocity fields that

vanish near (or on) §, and Vt=vi(g 5,), the set that is defined analogously but without the
solenoidality requirement. In this connection, the following gquestion occurs. ILet a stress
field t satisfy the equilibrium conditions (0.2) with V=Vt (then any stress field 7+ pg
also satisfies it, where p is an arbitrary pressure field and g is a metric tensor); could a

_________ £ia1A EorzmA syl ko oy ey atiofur +ha
pressure rielia p be found such tha T P WOULGQ Satisiy whe

i.e., (0.2) with V=V%

This question was apparently first studied in /2/ in application to hydromechanics pro-
blems in which the kinematic boundary conditions (§& = §,) are given on the whole boundary o4&
It turns out that such a pressure field can be found. Another case, of mixed boundary condi-
tions, is also of interest. It is shown below that a suitable pressure field can be found
even in this case. The role of this assertion is discussed in Sect.5.
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1. Formulation of the problem. Plan of the solution. Let S(s;; = 8§51 85 &
L,{R);i,j=1,2,...,n) be some stress field satisfying (0.2) with V = V? and let I be a set

of stress fields equilibrating the load f =0,q =0 (such stress fields are called self-
equilibrating). Then the set of stress fields, statically admissible for the load (f, @) can

be represented in the form Z + s. If s, and 8, are two stress fields eguilibrating the load
(f, q) , then their difference is evidently self-equilibrated, and therefore, Z 4 s, = I + s,
The study of the set of statically admissible stress fields therefore actually reduces to a

study of X.
In conformity with the two possibilities for the selection of V — V1 (Q, §,) and V2(Q, S
there are alsoc two sets of self-equilibrated stress fields
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TF=2(Q, 5,) = (E(V9f =
{o:oij=o,-.~, o= L () (1,j=1,2,...,n); Sa-edx=0,
Q

VesE(VY} (x=1,2)
where E (V¥ is the set of strain rates corresponding to the velocity fields from V* = V*(Q,

So)-
’ It is required to establish that for every t a pressure field p is found from It in L, (Q)

such that T -+ pg is in X2,
Let us examine a plan for solving this problem by first assuming that the boundary of the

domain and the initial stress field T are smooth.

First step. Since t belongs to 3!, then the equality, in particular
v,
S Tij -a—z]- dz=10

is satisfied for all smooth solenocidal fields v with compact carriers in Q(v& D(Q), divv =

0}.
By virtue of the results in /3/, there follows from this that

0t 10z = dtjdat (1.1)

where t is a smooth function because of the smoothness of t. If 9Q = §  then the construc-
tion terminates here; the desired pressure field is p = —{.

Second step. Since 1° =1 —ig lies on 3! together with 1, then for any v from V! (ve
€= (Q), vls, = 0, div v = 0)

e 2 4r=0
§"i:‘ o T (1.2)

Because of (l.1) we have 01:ij°/6.zj =0, then we find from (1.2) by the Stokes formula that

— 1. ST
agnvvds—O VvaeVyh vi=1v; (1.3)
(v is the unit external normal to 4Q).

Third step. Now let u be any field from V? (u & €= (Q), uls, = 0), and u, some smooth field
for which

Up Isv =0, S uevds = 1

é0
(such a u is found if § 5= Q).
Then for
=u—up \ uvds
OSQ (1.4)
the following relationships are satisfied
vis, =0, vvds =0
) aSn (1.5)
Let us now consider the trace vlsp. Because of the second of the conditions (1.5) it

has a smooth solenoidal continuation on Q — v, from V!, Then it follows from (1.3)

’Snvv,ds =0

which by utilizing (1.4) results in the relationship

S Yuds = ¢, S vuds Vus=V? cp= S Yueds (1.6)
s oa éa
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There remains to set ¢ =1 — (t +¢,) g and to use (1.6) and the Stokes formula to see that
for any y from V2

duy
) o4 =0
aQ

Therefore, ¢ lies in X! and the required pressure is p = —(f + ¢,).
This plan will later be realized under weakened assumptions on the smoothness of dQ and
t. Necessary for this is a certain preparatory operation since the construction produced
is fraught with a number of difficulties in the unsmooth case.

Namely, if the field T is not smooth, then even the f occurring in the first step can be
considered just as a generalized function. This difficulty was overcome in /2/. The results
obtained in /2/ for hydromechanics problems (in which 8Q = §,) carry over automatically to
the general case for R = §, (Theorem 5.1).

Furthermore, utilization of the Stokes formula is needed in the foundation for unsmooth

t. This foundation is given in Sect.4.

Finally, if the boundary éQ is not assumed smooth, then the continuation of v, consid-
ered in the third step is not generally smooth. In this case it cannot belong to V!, which
does not, in turn, permit direct utilization of the relationship (1.3) for it in order to ob-
tain (1.6). Therefore, V! must be expanded to a certain set V! such that firstly the set of
self-equilibrated stress fields would remain as before 21==(E(VU)°=:(E(VU)}secondly the
Stokes formula could be applied in (1.2) to derive (1.3) for any v from V!, ‘and thirdly, the
solenoidal continuation of v, in the third step would belong to V!. Such an expansion 1is
considered in Sect.3. The expansion of the set V? is examined first in Sect.2.

2. Trial velocity fields. since 0y &L,(Q) for the stress fields under considera-
tion, then compliance with the equilibrium conditions

S O'ijﬁl-ir- dr= 0
3 az’

for all v from V! (from V?) is equivalent to satisfying them for all v from Vi (from V3,
where V!(V?) is the closure of V'(V? in H!(Q). Here HYQ) and the HY:(dQ) utilized
later are Scbolev spaces whose properties have been studied well /4-7/. The closures Vi, V?
turn out to be suitable expansions of V!, VZ,

We also note that the set V2 of the trial velocity fields can itself be defined by two
methods, as all possible smooth velocity fields v in Q that vanish on or near S, or close
to §, (the latter means that the distance from the carrier supp v to J, is positive). Later,
not to distinguish these cases, we consider their corresponding sets of self-eguilibrated
stress fields to coincide. Coincidence is assured if U? = W?, where

U2="U%(Q, S,) = [(u=C™ (@):p (suppu, §,) > o} la o (z.1)
W2 W2(Q, §,) = (weH! (Q):w|s, = 0}

(p (A, B) is the distance between the sets 4 and B in R"). Lemma 2.1 will yield the suffic-
ient conditions for the equality U? = W? which will henceforth be used.

A certain regularity of dQ andS,is required for the proof of Lemma 2.1. We will con-
sider that Q is a bounded domain of class (!. This means that Q can be covered by a finite
number of domains [; on which mappings ¢: are defined that are continuously differentiable and
have continuously differentiable inverses. A standard cylinder in R" is the pattern for the
domain U; with the mapping ¢;, and a sphere in R™! is the pattern of U; (] dQ (if the inter-
section is non-empty). Let us note that continuously differentiable functions a; exist in R"
with carriers in U;, that accomplish the partition of unity in ﬁ:}]ai === 1.

We shall call the part §, of the boundary 4Q regular if the ‘map (Ui, ;) can be selected
such that the set G, the complement to the closure of the set ¢; (U; 1§, in R" is the domain
for each point of the boundary 68G; of which a neighborhood U in R™! and a direction f exist
such that for any sufficiently small shift in the direction § the set G; N U will not emerge
beyond the limits of the domain @G;. This latter property is satisfied, for instance, for a
strictly Lipschitzian domain G;.

Lemma 2.1. Let Q be a bounded domain of class (!, and S, the regular part of its bound-
ary. Then U?(Q, S,) = W?(Q, S,).

The embedding of U? in W? is evident. Moreover, every w from w? belongs to LIE For
the proof, the traces wl,, in HY:(3Q) can be approximated by functions v, that vanish on a
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circle in 49 of the set §, By virtue of the regularity of Sy for any &>0 the estimate
If,l<e can be assured for the function f, =W, — Vv, in HY(3Q). In the domain Q of theclass
¢t any function g from HY:(3Q) has the continuation £&°

el (@), glg=¢
18" T, < h8lgp/nag,

(2.2)

The function w, = w - (f)° approximates w
I — We oy < ¢
(¢ is independent of w) and vanishes in a certain neighborhood (in Q) of the set J,. It
remains to apply the following assertion to wg.

Lemma 2.2. Let Q be a bounded strictly Lipschitzian domain, § a closed subset in 4Q,
and u a function from HYQ), whose trace vanishes in a neighborhood 8§ in dQ of the set §.
Then for any € >0 there exists a smooth function u, from Cx (Q) which vanishes in a certain

neighborhood of the set § in Q and which approximates the finction W
fu—uela e le

By using the partition of unity, the proof of Lemma 2.2 is reduced to confirming it for
a star domain relative to a sphere with center at zero. Furthermore, it is sufficient to con-
sider a suitable continuation u® of the function u and a sequence of averages of the functions
uy (uy (z) = u® (dr), 2. > 1) as A - 1.

Finally, we note that if TU? = W2, then evidently U? = V2= 1W? independently of whether
the trial velocity fields should vanish near or on §, is required in the definition of V2.

3. Solenoidal velocity fields. For solenoidal fields in Q we set up the analog to
Lemma 2.1., i.e., agreement between the sets Ul and W!, where
Ul=U1(Q, §,) = [{usC™ (@):divu =0, p (supp u, Tp) > 0}Jm (0 (3.1)
Wi=W(Q,§,) == {weH! (Q):divw =0, w|s =0}

In the case 0Q = S, the agreement between U! and W! is proved in /2/ (Theorem 2.2).
Utilizing this, we obtain two assertions about the agreement between U! and W?! that cover a
sufficiently broad class (2, S,).

The following auxiliary proposition is used in proving the first.

Lemma 3.1. Let Q be a bounded strictly Lipschitzian domain; T dQ; 8@ \\T contains
a certain non-empty set open in @Q. Then for any function u from H!'(Q) with wujp =0 there
is a function v from H!(Q) such that

divv=0, vlp=0
fu—vjme<cldivuje, @

The validity of Lemma 3.1 follows directly from the results /2/.

Theorem 3.1. Let 1) Q be a bounded strictly Lipschitzian domain; 2) §,= QN Q'
where Q' is a strictly Lipschitzian domain not intersecting Q (Fig.l); 3) the domain G con-
taining Q and Q' and such that G = Q Uﬁ' is strictly Lipschitzian; 4) for every function w
from W!3Q,§,) and for any e>0 there is a w, from H!(Q) such that

Iw— we @ <e Welp = 0

where I' is a certain neighborhood of §, in 8Q.
Then

0@, 8,) = w(Q,5§,)

Remarks 1©. This latter assumption is necessary; sufficient conditions for its satis-
faction are given in Lemma 2.1.

20. For S=@ the theorem is proved in /2/, it can henceforth be considered that Sq#a Do
We recall that conditions (0.l) are assumed satisfied all the time.

Proof. The embedding of U'(Q, S,) in W' (Q, S,) is evident. Let w now be a function
from W!(Q, S,); we show that w belongs to uyQ, S,).

We first consider the function We, whose existence is assured by the assumption 4. Ac-
cording to Lemma 3.1, a function Ve from H!(Q) exists such that

divve =0, vgJp =0 (3.2)

I We = v I () < ce
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(¢ is independent of w,). It is later sufficient to confirm that v, can be approximated in
H(Q) by a function from U (Q, §,).

We construct a solenoidal continuation of the function v, in G that takes on a zero value
on 8G. To do this we consider first any continuation V& H!(R") of the function v, (it
always exists for a strictly Lipschitzian domain Q ). We now note that since the compacts
M\ I and 69'\Sq do not intersect, then there are nonintersecting neighborhoods U (4Q \ T),
U2’ \\S,) in R™ and a smooth function o finite in R", which takes onthe value { in U (09 \
[) and the value 0 on U (8Q' \(§,) . Then we have for the function aV. from H!(RY )

aVelopa—sp=0, aVeloa="Velso (3.3)

The function u, which agrees with Ve on Q and with aV. on CQ belongs to H!(R") and is
a continuation of Ve

We now consider the function 1w/ = u.|or from H(Q’). By virtue of the relationships
(3.3) and (3.2)

s s/
1 777 5’;':@"’;}“‘ (
/RN B0\
Sq /
Azy AR "L AKX
@ . /!,;'A’ofomt&k
S, 5,
Fig.l Fig.2
S u'v'ds = S ug'v'ds = — S vevds = — S vevds =10
4 Sq Sq oa
(v, v are unit external normals to 4Q, 4Q’). Then there is /2/ a function v, from H! (Q")
such that divve =0, v logr = e loge.
Let v, be a function in G that agrees with v, on Q and with v¢ on Q’, It is easy to

see that v,°e= H!(G) is a solencidal continuation of ve on G that has a zero trace on 4G.
According to Theorem 2.2 from /2/, there then exists for v’ an approximating solencidal field
from Cy®(G). The limitation of this field on Q evidently belongs to U'(Q, §,) and approxi-
mates v in H'{(Q), which proves the theorem.

Even in the smooth case, Theorem 3.1 is not applicable for every L, Sq For instance, if
the domain Q on a plane has the shape of a ring, part of the set §; is located on its inner
circumference, and another part on its outer, then it is impossible to construct a domain Q’
satisfying the conditions of Theorem 3.1.

The agreement between U! and W! can be established in this and analogous cases by consid-
ering Q and S, as comprised of certain domains Q’, Q" and parts of their boundaries §,/, §,"
Before proving a corresponding assertion, we list the requirements for the construction of a
composite domain.

LetQ, Q', Q'be bounded domains in R", Q = Q' U Q"; Q' is not embedded in Q", and Q'
is not embedded in §'; the intersection Q' [} Q" consists of a finite number of domains
Q;(i =1,2,. .., N), separated by positive distances; each of the domains Q, Q', Q", Q,; is placed
locally on one side of the boundary;a functiona from Cl(§) exists on Q and takes on the value 0
on QN Q° and the value 1 on Q\ Q" Furthermore, let S, §,,S,” be open subsets indR, '
and 9Q" , respectively; 8§, S, S, &S, S,=35, US,; moreover, let §, be contained in
the union of J§, with the boundary of the set Q"\Q  and in the union of §,” with the bound-
ary of the set Q' \ Q".

Upon compliance with these conditions, we call @ and §, regularly composed of Q, Q"
and 8, , S, respectively. The listed requirements, although they appear awkward, describe a
simple situation. An example is presented in Fig.2, where two domains Q', Q" are shadedwith
different cross-hatchings, S, is depicted by a heavy line, and S, is the dashed boundary.
Moreover, parts of the boundaries S, = 8Q; [} Q" 8" =0Q, N Q are indicated.

Let S’ and §* denote the unions US, andlUS§,} respectively. It is easy to confirm that

§8'(S") is the intersection of 8Q'(d Q")with ‘the boundary of the set Q"\ Q' (Q' \Q").
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Theorem 3.2. Let 1) Q and S, be regularly composed of Q',Q" and §,/and §,/, re-
spectively; 2) Q, Q;{(i=14,2,..., N) are strictly Lipschitzian domains, the boundary of the
domain §; contains a certain non-empty set U;, U;CS; in open 8Q;; 3) the following re-
lationships are valid

U@, S, US)=w@®,8 US§) (3.4)
U@, S, US)y=wW@,58,"US)

Then U (Q, S*n) = W! (95 Sv)'

Proof. The embedding of Ut «Q, 8, in W (Q, S,} is evident, Now, let w belong to
W (Q, S,); we show that w belongs also to U (Q, S,). .
It is sufficient to see that w can be represented in the form w = w’' 4+ w”, where

weH (Q), divw'=0, W ur=0
and w' is the continuation to zero of a certain function from B} (Q') in Q, while w" posses-
ses analogous properties with the replacement of the (') by (7). Actually, because of the
first of the conditions (3.4), for any &>0 a function w' from C=(Q') exists that vanishes
is the neighborhood of J/{J&' in Q' such that
dive'=0, [v—u'|me<e

Since, as has been remarked above, J’ = gQ’ ] Fr(Q” \ '), then u’ vanishes in the neigh-
borhood of this set in Q' (FrM is the boundary of the set M in R"™. Then wu/, its con-
tinuation to zero in Q"N Q' belongs to (={Q),_where dive /=10 and as is easily estab-
lished, u, vanishes in the neighborhood of J, in €. The function u, is constructed analog-
ously. The following properties are then evident for u= 1w/ + u/

u=C® @), diva=0
p(suppu, S} >0, [w—ujme <2

from which it is seen that w belongs to Ul (Q, §.).

We now show that w can be represented in the requisite from w= w -+ w”,

We consider first the function v == gw, Utilizing the properties of the function «
we find that v belongs tc H! (Q) and is a continuation to zero of a certain function from
H' (@) in Q. Since §' CFr(Q \ Q) and wls, = 0, then vlgys-=0. Compliance with the
solenoidality condition should still be achieved, the function v should be rectified in the
domains Q;(i=1, 2, ..., N) since only in them is divvs£0,

Let Iy be a neighborhood in 6Q; of the set §/ J &l Sos (Ses = S» 1082)), where 92\ I}
contains a certain set open in 9Q; (I, exists because of condition 2 of the theorem). Then
there is a function

viEW(Q), divy,=—divv, vilr,=0

Now, let w; be the continuation of v; to zero in L. It is easy to verify that w; s, usrusr =

0 and then the functions °

N N
we=qw -+ 2 w, W={1—ajw 2? Wy
{emy qml

possess all the required properties. The theorem is proved.
We note that if Ul = W1, then evidently V! = V1= w2 independently of whether the
disappearance of v from V! near or on §, is required in the definition of V1,

4. Stokes formula. Later, as is mentioned in Sect.l, the Stokes formula is to be
applied to the field 7 for which not all the first derivatives are generally at least locally
summable. In this connection, we consider the space of vector fields on Q

K (@Q)={ue L, Q) divue L, (Q))
with the norm
lulkoy=luli.e+ ldivalie

The space K (Q) refers to the class of spaces HM studied in /6/, where, however, the
question about integration by parts in which we are interested was not examined, The space
K (@) is complete, where (for instance, in strictly Lipschitzian domains)} ¢~ (@) is compact.
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Let Q@ be a bounded domain of the class ¢! in pg®. Every function v from (> (@ has a
trace ,= Vv|gov on 4Q (v is the unit external normal to Q). It can be considered as
an element of the space y':(3Q) = (/' (5Q)Y, whose action on w from #'* (3Q) is given by the re-
lationship

Dy Wy = S vwds
g

We note that
12y bty 0y < €1V hk) (4.1)

where ¢ is independent of v. Indeed, we take its continuation v in ¢ for w, as in (2.2).
Then from the Stokes formula

S vvwdsugwcdivva‘z—}—g vgradwcd:
da 2 Q

(4.1) follows. The completeness of ¢€> () in K (Q), the estimate (4.1l), and the correspond-
ing passage to the limit in the Stokes form now results in the following assertion.

Lemma 4.1. Let Q be a bounded domain of the class (! in BR". Then the mapping of the
trace u-»u, from K (Q) in H-+(6Q)

Qg wy = lim \. wMwds  VwesH" (8Q)

n-w0 doy
(where {u™} is any sequence of smooth functions converging to u in K (Q)) is linear and con-
tinuous. For any w from H' () and any u from K (Q) the Stokes formula is valid

S wdivudz == —-—S ugrad wdx -+ {uy, wlog)d
Q Q

5. Self-equilibrated stress fields in incompressible media. The plan noted in
Sect.l can now be realized. We first present an assertion about the relation between X' and
2 in the case §Q = §,, that results directly from results in /2/.

Theorem 5.1. (0.A. Ladyzhenskaia and V.A. Solonnikov). Let Q be a bounded strictly
Lipschitzian domain, 4Q) = §,. Then for any < from ' a pressure field peE Ly (R) exists such
that 7t - pg belongs to 32

Indeed, if 1 & L, (R), then v determines a linear continuous functional f¢ in H ! (Q)

a8
ouy = — S %5 i—}dz (VaezH,! () (5.1)
Q

Then the Stokes problem is uniquely solvable /2/, i.e., there is a v from Vi guch that
for any ue—zv'l

v, duy
i s == — ()
§ 8z’ Bz’ * Fowd

In the case under consideration Te& Xt and, therefore, I, 1;,,:0, hence v =0, Now we
apply the Theorem 2.1 /2/ to this solution of the Stokes problem: there is a p from L, (R) such
that

S pdivwdr=<(f,,w) Vwe=H,! (Q)
2

Because of (5.1) this also means that t 4 pg belongs to E* (since §,= 32 in the case

under consideration and, therefore, V2 = H, Q).
Furthermore, we consider the case of mixed boundary conditions. Let gQ s §, and T be~

long to the set It = X'(Q, §,).

First step. Since %1(Q, §,) is evidently embedded in X! (Q, Q), then according to
Theorem 5.1 a p®e= L, (Q) exists such that for 1° =1 + p°%g the following relationships are
satisfied

ot flor’ = 0. (5.2)
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Second step. By virtue of this latter relationship, the vectors 14 (i =1, 2,. = n) with
the components {t,° T3°, ... Tin} belong to the space K (Q). Then in the relationships

av;
Stﬁo——-a:j dac_O
b
(satisfied for every v from V1(Q, S, since T° together with 1 belongs to T (Q, S5) the

Stokes formula can be used (Lemma 4.1). Taking account of (5.2), we find that for any v from
v
<77VIOQ>=0 (5.3)
where ¥ belongs to H-Y:(9Q) and has the components y; = Tayv-
Third step. Now, let u be any field from V2, and u, some field from V2 for which
wls, =0, upvds =1
=0

(there is such a field since dQ % §,). Then for

=u—uo | uvds (5.4)
o
the following relations are satisfied
veH! (©), vls, =0, { vvds=0 (5.5)
F:7o]

Furthermore, we consider the field v, that possesses the following properties
v.&H(Q), divv,=0, v,loo="V]sg

(because of the conditions (5.5) such a field is in /2/). We note that v, belongs to W! (R, §.).
If W!(Q, S, agrees with V! (Q, §,), then by virtue of (5.3) <y, v, = 0 or, equivalent-

1y, <y V) = 0. -
According to (5.4), this means that for any u from V2(Q, §,)

{Pud =2¢o S uvds, co=={Y, o on) (5.6)
)

We set ¢ = 1° — 8. Using the Stokes formula and (5.2), we find that
6ui T2 5
S Gij—a-.-tT dxr= (‘V, u log) — {Co, V, U Iag} VIIEV (Q, LS,)
Q

As follows from (5.6), the right side vanishes here, and therefore, e =1 4 (p°—co)g
belongs to 22 (Q, §,). The following assertion is thereby proved.

Theorem 5.2. Let Q be a bounded domain of class C('; S, J; W1 (Q, S,) = V1 (R, S,). Then

for any v from X!(Q, §,) there is a pressure field pe& L, (Q) such that 7 4 pg belongs to
=(Q, §.).

Remarks. 1©. sufficient conditions for the agreement between W! and VI are given by
Theorems 3.1 and 3.2.

2°. The pressure field is defined uniquely by the deviator component of t. More exactly,
if 7, and 1, belong to 2! and their deviator components agree, but 6, = 7+ pg and o, =1, + p,g
belong to X% then ¢, =96, for S§,%+¢@ and o, —06,=cg, where ¢ is an arbitrary constant,
for S;= 2.

Certain problems of the mechanics of incompressible media reduce to the problem of find-
ing a self-equilibrated field of stresses 6 that satisfies definite conditions. If these con-
ditions do not impose constraints on the spherical component of 6, then it can generally be
eliminated from consideration by comprehending self-equilibration as belonging of the field of
stresses 0 to the set ZI!. 1In such a "deviator” problem the spherical component of the re-
quired stresses is not determined (we recall that every t from X! is defined to the accuracy
of the addition of an arbitrary spherical tensor field).

The solution of the complete problem (inwhose formulation the self-equilibration of ¢ is
understood as belonging of the ¢ to the set 2% is also a solution of the deviator problem.
Thecrem 5.2 can be used for the reverse comparison of the solution = — pg of the total
problem to the solution <, of the deviator problem.
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