# STATICALLY ADMISSIBLE STRESS FIELDS IN INCOMPRESSIBLE MEDIA* 

## Ia. A KAMENIARZH

A set of statically admissible stress fields must often be considered in problems of the mechanics of a continuous medium. In particular, the extremums shouldbesought in this set in conformity with the Castigliano principle for the static limit coefficient of the theory of ideal plasticity. Two different sets of statically admissible stresses are used for incompressible media. Their interrelation is known only for kinematic conditions on the whole boundary of the body. An analogous relation is established in this paper for the case of mixed boundary conditions, and the possibility of its utilization is discussed.

Let a continuous medium fill the domain $\Omega$ in $R^{n}(n=2,3)$, and let it be subjected to mass forces with density $f$ given in $\Omega$, and a surface load with density $q$ given on a part $S_{q}$ of the boundary of the domain $\Omega$. Furthermore, let

$$
\begin{equation*}
S_{v}=\partial \Omega \backslash \bar{S}_{q}, S_{\boldsymbol{q}}=\partial \Omega \backslash \bar{S}_{v} \tag{0.1}
\end{equation*}
$$

where the bar denotes the closure in $R^{n}$, and the velocity is given on $S_{v}$ (for instance, $S_{v}$ is clamped).

A stress field equilibrating the load (f, q) is called statically admissible; the equilibrium conditions in the domain $\Omega$ and on its boundary can be written in the form of equations for the principle of virtual velocities /l/

$$
\begin{align*}
& \int_{\Omega} \boldsymbol{\sigma} \cdot \mathbf{e} d x-\int_{\Omega} \mathbf{f} \mathbf{v} d x-\int_{\boldsymbol{S}_{q}} \mathbf{q v} d s=0 \quad \forall \mathbf{v} \in \mathbf{V}  \tag{0.2}\\
& e_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x^{j}}+\frac{\partial v_{j}}{\partial x^{i}}\right), \quad i, j=1,2, \ldots, n
\end{align*}
$$

where $V$ is the set of virtual (trial) velocity fields, and $x^{i}$ are Cartesian coordinates in $R^{n}$.
For incompressible media there are two natural possibilities for the selection of $V: V 1=$ $V^{\prime}\left(\Omega, S_{v}\right)$ is the set of smooth, i.e., belonging to $C^{\infty}(\Omega)$, solenoidal velocity fields that vanish near (or on) $S_{v}$ and $V^{2}=V^{2}\left(\Omega, S_{v}\right)$, the set that is defined analogously but without the solenoidality requirement. In this connection, the following question occurs. Let a stress field $\tau$ satisfy the equilibrium conditions ( 0.2 ) with $\mathbf{V}=\mathbf{V}^{\mathbf{1}}$ (then any stress field $\boldsymbol{r}+\mathrm{pg}$ also satisfies it, where $p$ is an arbitrary pressure field and $g$ is a metric tensor); could a pressure field $p$ be found such that $r+p g$ would satisfy the complete equilibrium conditions, i.e., ( 0.2 ) with $V=V^{2}$ ?

This question was apparently first studied in $/ 2 /$ in application to hydromechanics problems in which the kinematic boundary conditions ( $\alpha \Omega=S_{v}$ ) are given on the whole boundary $\partial \Omega$ It turns out that such a pressure field can be found. Another case, of mixed boundary conditions, is also of interest. It is shown below that a suitable pressure field can be found even in this case. The role of this assertion is discussed in Sect. 5 .

1. Formulation of the problem. Plan of the solution. Let $\mathrm{s}\left(s_{i j}=s_{j i} ; s_{i j} \in\right.$ $\left.L_{2}(\Omega) ; i, j=1,2, \ldots, n\right)$ be some stress field satisfying ( 0.2 ) with $V-V^{2}$ and let $\mathbf{\Sigma}$ be a set of stress fields equilibrating the load $f=0, \mathbf{q}=0$ (such stress fields are called selfequilibrating). Then the set of stress fields, statically admissible for the load (f, q) can be represented in the form $\mathbf{\Sigma}+\mathrm{s}$. If $\mathbf{s}_{1}$ and $\mathbf{s}_{2}$ are two stress fields equilibrating the load $(\mathbf{f}, \mathbf{q})$, then their difference is evidently self-equilibrated, and therefore, $\mathbf{\Sigma}+\mathbf{s}_{\mathbf{1}}=\mathbf{\Sigma}+\mathbf{s}_{\mathbf{2}}$. The study of the set of statically admissible stress fields therefore actually reduces to a study of $\mathbf{\Sigma}$.

In conformity with the two possibilities for the selection of $\mathbf{V}-\mathbf{V}^{1}\left(\Omega, S_{v}\right)$ and $\mathbf{V}^{2}\left(\Omega, S_{v}\right)$, there are also two sets of self-equilibrated stress fields

[^0]\[

$$
\begin{aligned}
& \Sigma^{\kappa}=\Sigma^{\kappa}\left(\Omega, S_{v}\right)=\left(\mathbf{E}\left(\mathbf{V}^{x}\right)\right)^{\circ}= \\
& \quad\left\{\sigma: \sigma_{i j}=\sigma_{j i}, \sigma_{i j} \in L_{2}(\Omega) \quad(i, j=1,2, \ldots, n) ; \int_{\Omega} \sigma \cdot \mathbf{e} d x=0,\right. \\
& \left.\forall \mathbf{V e} \in \mathbf{E}\left(\mathbf{V}^{\star}\right)\right\} \quad(x=1,2)
\end{aligned}
$$
\]

where $\mathbf{E}\left(\mathbf{V}^{x}\right)$ is the set of strain rates corresponding to the velocity fields from $\mathbf{V}^{x}=\mathbf{V}^{x}(\Omega$, $S_{v}$ ).

It is required to establish that for every $\tau$ a pressure field $p$ is found from $\boldsymbol{\Sigma}^{1}$ in $L_{2}(\Omega)$ such that $\boldsymbol{\tau}+p \mathbf{g}$ is in $\mathbf{\Sigma}^{2}$.

Let us examine a plan for solving this problem by first assuming that the boundary of the domain and the initial stress field $\tau$ are smooth.

First step. Since $\tau$ belongs to $\mathbf{\Sigma}$, then the equality, in particular

$$
\int_{\Omega} \tau_{i j} \frac{\partial v_{i}}{\partial x^{j}} d x=0
$$

is satisfied for all smooth solenoidal fields $\mathbf{v}$ with compact carriers in $\Omega(\mathbf{v} \in \mathbf{D}(\Omega)$, div $\mathbf{v}=$ $0)$.

By virtue of the results in $/ 3 /$, there follows from this that

$$
\begin{equation*}
\partial \tau_{i j} / \partial x^{j}=\partial t / d x^{i} \tag{1.1}
\end{equation*}
$$

where $t$ is a smooth function because of the smoothness of $\tau$. If $\partial \Omega=S_{p}$, then the construction terminates here; the desired pressure field is $p=-t$.

Second step. Since $\tau^{\circ}=\boldsymbol{\tau}-\operatorname{tg}$ lies on $\boldsymbol{\Sigma}^{1}$ together with $\tau$, then for any from $\mathbf{V}^{\mathbf{1}}(\mathbf{v} \in$ $\left.\mathrm{C}^{\infty}(\bar{\Omega}),\left.\mathbf{v}\right|_{s_{v}}=0, \operatorname{div} \mathbf{v}=0\right)$

$$
\begin{equation*}
\int_{\Omega} \tau_{i j}{ }^{\circ} \frac{\partial v_{i}}{\partial x^{j}} d x=0 \tag{1.2}
\end{equation*}
$$

Because of (1.1) we have $\partial \tau_{i j}{ }^{\circ} / \partial x^{j}=0$, then we find from (1.2) by the Stokes formula that

$$
\begin{equation*}
\int_{\partial \Omega} \gamma \mathbf{v} d s=0 \quad \forall \mathbf{v} \in \mathbf{V}^{1} ; \quad \gamma_{i}=\tau_{i j}{ }^{\circ} v_{j} \tag{1.3}
\end{equation*}
$$

( $v$ is the unit external normal to $\partial \Omega$ ).
Third step. Now let $u$ be any field from $\mathbf{V}^{2}\left(\mathbf{u} \in \mathbf{C}^{\infty}(\bar{\Omega}),\left.\mathbf{u}\right|_{s_{v}}=0\right.$, and $\mathbf{u}_{0}$ some smooth field for which

$$
\mathbf{u}_{0} \mid s_{v}=0, \quad \int_{\partial \Omega} \mathbf{u}_{0} v d s=1
$$

(such a $\mathbf{u}$ is found if $S_{q} \neq \varnothing$ ).
Then for

$$
\begin{equation*}
\mathbf{v}=\mathbf{u}-\mathbf{u}_{0} \int_{\partial \Omega} \mathbf{u} \mathbf{v} d s \tag{1.4}
\end{equation*}
$$

the following relationships are satisfied

$$
\begin{equation*}
\left.\mathbf{v}\right|_{s_{\mathbf{v}}}=0, \quad \int_{\nabla \Omega} \mathbf{v} v d s=0 \tag{1.5}
\end{equation*}
$$

Let us now consider the trace $v$ loo. Because of the second of the conditions (1.5) it has a smooth solenoidal continuation on $\Omega-\mathbf{v}_{\mathbf{s}}$ from $\mathbf{V}^{\mathbf{1}}$. Then it follows from (1.3)

$$
\int_{O Q} \gamma \mathbf{v}_{s} d s=0
$$

which by utilizing (1.4) results in the relationship

$$
\begin{equation*}
\int_{\partial \Omega} \gamma \mathbf{u} d s=c_{0} \int_{\partial \Omega} \mathbf{v u} d s \quad \forall \mathbf{u} \in \mathrm{~V}^{2} ; \quad c_{0}=\int_{\partial \Omega} \gamma \mathbf{u}_{0} d s \tag{1.6}
\end{equation*}
$$

There remains to set $\boldsymbol{\sigma}=\boldsymbol{\tau}-\left(t+c_{0}\right) \mathrm{g}$ and to use (1.6) and the Stokes formula to see that for any $u$ from $V^{2}$

$$
\int_{\partial \Omega} \sigma_{i j} \frac{\partial u_{i}}{\partial x^{j}} d x=0
$$

Therefore, $\boldsymbol{\sigma}$ lies in $\boldsymbol{\Sigma}^{2}$ and the required pressure is $p=-\left(t+c_{0}\right)$.
This plan will later be realized under weakened assumptions on the smoothness of $\partial \Omega$ and
$r$. Necessary for this is a certain preparatory operation since the construction produced is fraught with a number of difficulties in the unsmooth case.

Namely, if the field $\tau$ is not smooth, then even the $t$ occurring in the first step can be considered just as a generalized function. This difficulty was overcome in $/ 2 /$. The results obtained in $/ 2 /$ for hydromechanics problems (in which $\partial \Omega=S_{p}$ ) carry over automatically to the general case for $\Omega=S_{0}$ (Theorem 5.1).

Furthermore, utilization of the Stokes formula is needed in the foundation for unsmooth
$\tau$. This foundation is given in Sect. 4.
Finally, if the boundary $\partial \Omega$ is not assumed smooth, then the continuation of $v_{s}$ considered in the third step is not generally smooth. In this case it cannot belong to $\mathbf{V}^{\mathbf{1}}$, which does not, in turn, permit direct utilization of the relationship (1.3) for it in order to obtain (1.6). Therefore, $\mathbf{V}^{1}$ must be expanded to a certain set $\overline{\mathbf{V}}^{1}$ such that firstly the set of self-equilibrated stress fields would remain as before $\mathbf{\Sigma}^{1}=\left(\mathbf{E}\left(\mathbf{V}^{1}\right)\right)^{\circ}=\left(\mathbf{E}\left(\overline{\mathbf{V}}^{1}\right)\right)^{\text {a }}$, secondiy the Stokes formula could be applied in (1.2) to derive (1.3) for any $v$ from $\overline{\mathbf{V}}^{1}$, and thirdly, the solenoidal continuation of $\mathbf{v}_{s}$ in the third step would belong to $\overline{\mathbf{V}}^{1}$. Such an expansion is considered in Sect.3. The expansion of the set $\mathbf{V}^{\mathbf{2}}$ is examined first in Sect.2.
2. Trial velocity fields. Since $\sigma_{i j} \in L_{2}(\Omega)$ for the stress fields under consideration, then compliance with the equilibrium conditions

$$
\int_{\Omega} \sigma_{i j} \frac{\partial v_{i}}{\partial x^{j}} d x=0
$$

for all $\mathbf{v}$ from $V^{1}$ (from $V^{2}$ ) is equivalent to satisfying them for all $\mathbf{v}$ from $\overline{\mathbf{V}}^{1}$ (from $\overline{\mathbf{V}}^{2}$ ), where $\overline{\mathbf{V}}^{1}\left(\overline{\mathbf{V}}^{2}\right)$ is the closure of $\mathbf{V}^{1}\left(\mathbf{V}^{2}\right)$ in $\mathbf{H}^{1}(\Omega)$. Here $\mathbf{H}^{1}(\Omega)$ and the $H^{1 / 2}(\partial \Omega)$ utilized later are Sobolev spaces whose properties have been studied well $/ 4-7 /$. The closures $\overline{\mathbf{V}}^{1}$, $\overline{\mathbf{V}}^{\mathbf{n}}$ turn out to be suitable expansions of $\mathbf{V}^{1}, \mathbf{V}^{2}$.

We also note that the set $\mathbf{V}^{2}$ of the trial velocity fields can itself be defined by two methods, as all possible smooth velocity fields $\mathbf{v}$ in $\bar{\Omega}$ that vanish on or near $\bar{S}_{v}$ or close to $\bar{S}_{v}$ (the latter means that the distance from the carrier supp $\mathbf{v}$ to $\bar{S}_{v}$ is positive). Later, not to distinguish these cases, we consider their corresponding sets of self-equilibrated stress fields to coincide. Coincidence is assured if $U^{2}=W^{2}$, where

$$
\begin{align*}
& \mathbf{U}^{2}=\mathbf{U}^{2}\left(\Omega, S_{v}\right)=\left[\left\{\mathbf{u} \in C^{\infty}(\bar{\Omega}): \rho\left(\operatorname{supp} u, \bar{S}_{v}\right)>0\right\}\right]_{\mathbf{H}^{2}(\Omega)}  \tag{2.1}\\
& \mathbf{W}^{2}=\mathrm{W}^{2}\left(\Omega, S_{v}\right)=\left\{\mathbf{w} \in \mathbf{H}^{1}(\Omega):\left.w\right|_{s_{v}}=0\right\}
\end{align*}
$$

( $\rho\left(A, B\right.$ ) is the distance between the sets $A$ and $B$ in $R^{n}$ ). Lemma 2.1 will yield the sufficient conditions for the equality $\mathbf{U}^{2}=\mathbf{W}^{2}$ which will henceforth be used.

A certain regularity of $\partial \Omega$ and $S_{v}$ is required for the proof of Lemma 2.1. We will consider that $\Omega$ is a bounded domain of class $C^{1}$. This means that $\bar{\Omega}$ can be covered by a finite number of domains $U_{i}$ on which mappings $\varphi_{i}$ are defined that are continuously differentiable and have continuously differentiable inverses. A standard cylinder in $R^{n}$ is the pattern for the domain $U_{i}$ with the mapping $\varphi_{i}$, and a sphere in $R^{n-1}$ is the pattern of $U_{i} \cap \partial \Omega$ (if the intersection is non-empty). Let us note that continuously differentiable functions $\alpha_{i}$ exist in $R^{n}$ with carriers in $U_{i}$, that accomplish the partition of unity in $\bar{\Omega}: \sum_{i} \alpha_{i} \mid \overline{\bar{n}}=1$.

We shall call the part $S_{v}$ of the boundary $\partial \Omega$ regular if the ${ }^{i}$ map $\left(U_{i}, \varphi_{i}\right)$ can be selected such that the set $G_{i}$ the complement to the closure of the set $\varphi_{i}\left(U_{i} \cap S_{v}\right)$ in $R^{n}$, is the domain for each point of the boundary $\partial G_{i}$ of which a neighborhood $U$ in $R^{n-1}$ and a direction $\xi$ exist such that for any sufficiently small shift in the direction $\xi$ the set $\vec{G}_{i} \cap U$ will not emerge beyond the limits of the domain $G_{j}$. This latter property is satisfied, for instance, for a strictly Lipschitzian domain $G_{i}$.

Lemma 2.1. Let $\Omega$ be a bounded domain of class $C^{1}$, and $S_{v}$ the regular part of its boundary. Then $\mathbf{U}^{2}\left(\Omega, S_{v}\right)=\mathbf{W}^{2}\left(\Omega, S_{\eta}\right)$.

The embedding of $\mathbf{U}^{2}$ in $\mathbf{W}^{\mathbf{2}}$ is evident. Moreover, every $w$ from $\mathbf{W}^{2}$ belongs to $\mathbf{U}^{2}$. For the proof, the traces $w l_{\partial \Omega}$ in $\mathbf{H}^{1 / 2}(\partial \Omega)$ can be approximated by functions $\mathbf{v}_{\varepsilon}$ that vanish on a
circle in $\partial \Omega$ of the set $\tilde{S}_{v}$. By virtue of the regularity of $S_{v}$ for any $\varepsilon>0$ the estimate $\left\|f_{e}\right\|<\varepsilon$ can be assured for the function $f_{\varepsilon}=\left.\mathbf{w}\right|_{\partial \Omega}-v_{\varepsilon}$ in $H^{1 / 2}(\partial \Omega)$. In the domain $\Omega$ of the class $C^{2}$ any function $g$ from $\mathbf{H}^{1 / 2}(\partial \Omega)$ has the continuation $\mathbf{g}^{c}$

$$
\begin{align*}
& \mathbf{g}^{c} \in \mathbf{H}^{1}(\Omega),\left.\quad \mathbf{g}^{c}\right|_{\partial \Omega}=\mathbf{g}  \tag{2.2}\\
& \left\|g^{c}\right\|_{\mathbf{H}^{\prime}(\Omega)} \leqslant c\|g\|_{\mathbf{H}^{1 / 2}(\boldsymbol{Q})}
\end{align*}
$$

The function $\mathbf{w}_{\varepsilon}=\mathbf{w}+\left(\boldsymbol{f}_{\varepsilon}\right)^{\text {s }}$ approximates $\mathbf{w}$

$$
\left\|w-w_{\mathcal{E}}\right\|_{\mathbf{H} Y(\Omega)} \leqslant c \varepsilon
$$

( $c$ is independent of $w$ ) and vanishes in a certain neighborhood (in $\partial \Omega$ ) of the set $S_{v}$. It remains to apply the following assertion to $\mathbf{w}_{\varepsilon}$.

Lenma 2.2. Let $\Omega$ be a bounded strictly Lipschitzian domain, $S$ a closed subset in $\alpha \Omega$, and $u$ a function from $H^{1}(\Omega)$, whose trace vanishes in a neighborhood $S^{\prime}$ in $\partial \Omega$ of the set $S$. Then for any $\varepsilon>0$ there exists a smooth function $\mathbf{u}_{\varepsilon}$ from $\mathbf{C}^{\infty}(\bar{\Omega})$ which vanishes in a certain neighborhood of the set $S$ in $\bar{\Omega}$ and which approximates the function $u$ :

$$
\left\|\mathbf{u}-\mathbf{u}_{\varepsilon}\right\|_{\mathbf{H}^{\mathbf{1}}(\boldsymbol{\Omega})}<\varepsilon
$$

By using the partition of unity, the proof of Lemma 2.2 is reduced to confirming it for a star domain relative to a sphere with center at zero. Furthermore, it is sufficient to consider a suitable continuation $u^{c}$ of the function $u$ and a sequence of averages of the functions $u_{\lambda}\left(u_{\lambda}(x)=u^{c}(\lambda x), \lambda>1\right)$ as $\lambda \rightarrow 1$.

Finally, we note that if $\mathbf{U}^{2}=\mathbf{W}^{2}$, then evidently $\mathbf{U}^{2}=\overline{\mathbf{V}}^{2}=\mathbf{W}^{2}$ independently of whether the trial velocity fields should vanish near or on $\bar{S}_{v}$ is required in the definition of $\mathbf{V}^{2}$.
3. Solenoidal velocity fields. For solenoidal fields in $\Omega$ we set up the analog to Lemma 2.1., i.e., agreement between the sets $U^{1}$ and $W^{1}$, where

$$
\begin{align*}
& \mathbf{U}^{1}=\mathbf{U}^{1}\left(\Omega, S_{v}\right)=\left[\left\{\mathbf{u} \in \mathrm{C}^{\infty}(\bar{\Omega}): \operatorname{div} \mathbf{u}=0, \rho\left(\operatorname{supp} \mathbf{u}, \bar{S}_{v}\right)>0\right\}\right]_{\mathbf{H}^{1}(\Omega)}  \tag{3.1}\\
& \mathbf{W}^{1}=\mathbf{W}^{1}\left(\Omega, S_{v}\right)=\left\{\mathbf{w} \in \mathbf{H}^{1}(\Omega): \operatorname{div} \mathbf{w}=0,\left.\mathbf{w}\right|_{S_{v}}=0\right\}
\end{align*}
$$

In the case $\partial \Omega=S_{v}$ the agreement between $\mathbf{U}^{1}$ and $\mathbf{W}^{1}$ is proved in $/ 2$ (Theorem 2.2). Utilizing this, we obtain two assertions about the agreement between $\mathbf{U}^{\mathbf{1}}$ and $\mathbf{W}^{\mathbf{1}}$ that cover a sufficiently broad class ( $\Omega, S_{v}$ ).

The following auxiliary proposition is used in proving the first.
Lemma 3.1. Let $\Omega$ be a bounded strictly Lipschitzian domain; $\Gamma \subset \partial \Omega ; \partial \Omega \backslash \Gamma$ contains a certain non-empty set open in $\partial \Omega$. Then for any function $\mathbf{u}$ from $\mathbf{H}^{1}(\Omega)$ with $\left.u\right|_{r}=0$ there is a function $v$ from $H^{1}(\Omega)$ such that

$$
\begin{aligned}
& \operatorname{div} \mathbf{v}=0,\left.\quad \mathbf{v}\right|_{\mathbf{r}}=0 \\
& \|\mathbf{u}-\mathbf{v}\|_{\mathbf{H}^{\mathbf{r}}(\Omega)} \leqslant c\|\operatorname{div} \mathbf{u}\|_{\boldsymbol{L}_{\mathbf{n}}(\mathbf{\Omega})}
\end{aligned}
$$

The validity of Lemma 3.1 follows directly from the results $/ 2 /$.
Theorem 3.1. Let 1) $\Omega$ be a bounded strictly Lipschitzian domain; 2) $\bar{S}_{q}=\partial \Omega \cap \partial \Omega^{\prime}$ where $\Omega^{\prime}$ is a strictly Lipschitzian domain not intersecting $\Omega$ (Fig.1); 3) the domain $G$ containing $\Omega$ and $\Omega^{\prime}$ and such that $\bar{G}=\bar{\Omega} \cup \bar{\Omega}^{\prime}$ is strictly Lipschitzian; 4) for every function $w$ from $W^{1}\left(\Omega, S_{\mathfrak{v}}\right)$ and for any $\varepsilon>0$ there is a $\mathbf{w}_{\varepsilon}$ from $H^{1}(\Omega)$ such that

$$
\left\|w-w_{e}\right\|_{H^{2}(\Omega)}<\varepsilon,\left.\quad w_{z}\right|_{\Gamma}=0
$$

where $\Gamma$ is a certain neighborhood of $S_{v}$ in $\partial \Omega$.
Then

$$
\mathbf{U}^{1}\left(\Omega, S_{v}\right)=\mathbf{W}^{1}\left(\Omega, S_{v}\right)
$$

Remarks $1^{0}$. This latter assumption is necessary; sufficient conditions for its satisfaction are given in Lemma 2.1.
$2^{\circ}$. For $S_{q}=\varnothing$ the theorem is proved in $/ 2 /$, it can henceforth be considered that $S_{q} \neq \varnothing$. We recall that conditions (0.1) are assumed satisfied all the time.

Proof. The embedding of $\mathrm{U}^{\mathbf{1}}\left(\Omega, S_{v}\right)$ in $\mathbf{W}^{\mathbf{1}}\left(\Omega, S_{v}\right)$ is evident. Let $w$ now be a function from $W^{1}\left(\Omega, S_{v}\right)$; we show that $w$ belongs to $\mathbf{U}^{1}\left(\Omega, S_{v}\right)$.

We first consider the function $w_{e}$, whose existence is assured by the assumption 4. According to Lemma 3.1, a function $\mathbf{v}_{\boldsymbol{\varepsilon}}$ from $\mathbf{H}^{\mathbf{1}}(\Omega)$ exists such that

$$
\begin{align*}
& \operatorname{div} \mathbf{v}_{\varepsilon}=0,\left.\quad \mathbf{v}_{\varepsilon}\right|_{\mathbf{r}}=0  \tag{3.2}\\
& \left\|\mathbf{w}_{\varepsilon}-\mathbf{v}_{\boldsymbol{\varepsilon}}\right\|_{\mathbf{H}^{\mathbf{r}}(\Omega)}<\boldsymbol{c} \boldsymbol{\varepsilon}
\end{align*}
$$

( $c$ is independent of $\boldsymbol{w}_{\boldsymbol{\varepsilon}}$ ). It is later sufficient to confirm that $\mathbf{v}_{\boldsymbol{\varepsilon}}$ can be approximated in $\mathbf{H}^{1}(\Omega)$ by a function from $\mathbf{U}^{1}\left(\Omega, S_{\nu}\right)$.

We construct a solenoidal continuation of the function $\mathbf{v}_{\boldsymbol{\varepsilon}}$ in $G$ that takes on a zero value on $\partial G$. To do this we consider first any continuation $\mathbf{V}_{\boldsymbol{\varepsilon}} \in \mathbf{H}^{\mathbf{1}}$ ( $R^{n}$ ) of the function $\mathbf{v}_{\mathrm{c}}$ (it always exists for a strictly Lipschitzian domain $\Omega$ ). We now note that since the compacts $\partial \Omega \backslash \Gamma$ and $\partial \Omega^{\prime} \backslash S_{q}$ do not intersect, then there are nonintersecting neighborhoods $U(\partial \Omega \backslash \Gamma)$, $U\left(\partial \Omega^{\prime} \backslash S_{q}\right)$ in $R^{n}$ and a smooth function $\alpha$ finite in $R^{n}$, which takes on the value 1 in $U(\partial \Omega$ $\Gamma$ ) and the value 0 on $U\left(\partial \Omega^{\prime} \backslash S_{q}\right)$. Then we have for the function $\alpha \mathbf{V}_{\varepsilon}$ from $H^{1}\left(R^{n}\right)$

$$
\begin{equation*}
\left.\alpha \mathbf{V}_{\varepsilon}\right|_{U\left(\partial \Omega^{\prime}-S_{\mathbf{q}}\right)}=0,\left.\quad \alpha \mathbf{V}_{\varepsilon}\right|_{\partial \Omega}=\left.\mathbf{v}_{\varepsilon}\right|_{\partial \Omega} \tag{3.3}
\end{equation*}
$$

The function $\mathbf{u}_{\varepsilon}$ which agrees with $\mathbf{v}_{\varepsilon}$ on $\Omega$ and with $\alpha \mathbf{V}_{\varepsilon}$ on $C \Omega$ belongs to $\mathbf{H}^{1}\left(R^{n}\right)$ and is a continuation of $\mathbf{v}_{\boldsymbol{e}}$.

We now consider the function $u_{\varepsilon}^{\prime}=\mathbf{u}_{\varepsilon} \mid \Omega^{\prime}$ from $\mathbf{H}^{1}\left(\Omega^{\prime}\right)$. By virtue of the relationships (3.3) and (3.2)


Fig. 1


Fig. 2

$$
\int_{\partial Q^{\prime}} \mathbf{u}_{\varepsilon}^{\prime} v^{\prime} d s=\int_{S_{Q}} u_{\varepsilon^{\prime}}^{\prime} v^{\prime} d s=-\int_{S_{Q}} \mathbf{v}_{\varepsilon} v d s=-\int_{\partial \Omega} \mathbf{v}_{\mathrm{e}} v d s=0
$$

$\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right.$ are unit external normals to $\left.\partial \Omega, \partial \Omega^{\prime}\right)$. Then there is $/ 2 /$ a function $\mathbf{v}_{\boldsymbol{\varepsilon}}{ }^{\boldsymbol{r}}$ from $\mathbf{H}^{1}\left(\Omega^{\boldsymbol{\prime}}\right.$ ) such that $\operatorname{div} \mathbf{v}_{\mathrm{e}}{ }^{\prime}=0,\left.\mathrm{v}_{\mathrm{e}}{ }^{\prime}\right|_{\partial \alpha^{\prime}}=\left.\mathbf{u}_{\mathrm{e}}{ }^{\prime}\right|_{\partial \Omega^{\prime}}$.

Let $\mathbf{v}_{\varepsilon}{ }^{e}$ be a function in $G$ that agrees with $\mathbf{v}_{\boldsymbol{e}}$ on $\Omega$ and with $\mathbf{v}_{\boldsymbol{e}}$ on $\Omega^{\prime}$. It is easy to see that $\mathbf{v}_{e}{ }^{c} \in \mathbf{H}^{1}(G)$ is a solenoidal continuation of $\mathbf{v}_{e}$ on $G$ that has a zero trace on $\partial G$. According to Theorem 2.2 from $/ 2 /$, there then exists for $v_{e}{ }^{c}$ an approximating solenoidal field from $C_{0}{ }^{\infty}(G)$. The limitation of this field on $\Omega$ evidently belongs to $\mathrm{U}^{1}\left(\Omega, \bar{S}_{v}\right)$ and approximates $\mathbf{v}_{z}$ in $\mathbf{H}^{\mathbf{1}}(\Omega)$, which proves the theorem.

Even in the smooth case, Theorem 3.1 is not applicable for every $\Omega, S_{q}$. For instance, if the domain $\Omega$ on a plane has the shape of a ring, part of the set $S_{q}$ is located on its inner circumference, and another part on its outer, then it is impossible to construct a domain $\Omega^{\prime}$ satisfying the conditions of Theorem 3.1.

The agreement between $\mathbf{U}^{1}$ and $\mathbf{W}^{1}$ can be established in this and analogous cases by considering $\Omega$ and $S_{v}$ as comprised of certain domains $\Omega^{\prime}, \Omega^{\prime \prime}$ and parts of their boundaries $S_{v}{ }^{\prime}, S_{v}{ }^{\prime \prime}$. Before proving a corresponding assertion, we list the requirements for the construction of a composite domain.

Let $\Omega, \Omega^{\prime}, \Omega^{\prime \prime}$ be bounded domains in $R^{n}, \Omega=\Omega^{\prime} \cup \Omega^{\prime \prime} ; \Omega^{\prime}$ is not embedded in $\Omega^{\prime \prime}$, and $\Omega^{\prime \prime}$ is not embedded in $\Omega^{\prime}$; the intersection $\Omega^{\prime} \cap \Omega^{\prime \prime}$ consists of a finite number of domains $\Omega_{i}(i=1,2, \ldots, N)$, separated by positive distances; each of the domains $\Omega, \Omega^{\prime}, \Omega^{\prime \prime}, \Omega_{i}$ is placed locally on one side of the boundary; a function $\alpha$ from $C^{1}(\bar{\Omega})$ exists on $\bar{\Omega}$ and takes on the value 0 on $\Omega \backslash \Omega^{\prime}$ and the value 1 on $\Omega \backslash \Omega^{\prime \prime}$. Furthermore, let $S_{v}, S_{v}{ }^{\prime}, S_{v}{ }^{\prime \prime}$ be open subsets in $\partial \Omega$, $\partial \Omega^{\prime}$ and $\partial \Omega^{\prime \prime}$, respectively; $S_{v}^{\prime} \subset S_{v}, S_{v}^{\prime \prime} \subset S_{v}, \bar{S}_{v}=\bar{S}_{v}^{\prime} \cup \bar{S}_{v}{ }^{\prime \prime}$; moreover, let $\bar{S}_{v}$ be contained in the union of $\bar{S}_{v}{ }^{\prime}$ with the boundary of the set $\Omega^{\prime \prime} \backslash \Omega^{\prime}$ and in the union of $\bar{S}_{v}{ }^{\prime \prime}$ with the boundary of the set $\Omega^{\prime} \backslash \Omega^{\prime \prime}$.

Upon compliance with these conditions, we call $\Omega$ and $S_{v}$ regularly composed of $\Omega^{\prime}, \Omega^{\prime \prime}$ and $S_{v}{ }^{\prime}, S_{v}{ }^{\prime \prime}$ respectively. The listed requirements, although they appear awkward, describe a simple situation. An example is presented in Fig. 2 , where two domains $\Omega^{\prime}, \Omega^{\prime \prime}$ are shadedwith different cross-hatchings, $S_{v}{ }^{\prime}$ is depicted by a heavy line, and $S_{v}{ }^{\prime \prime}$ is the dashed boundary. Moreover, parts of the boundaries $S_{i}^{\prime}=\partial \Omega_{i} \cap \Omega^{\prime \prime}, S_{i}^{\prime \prime}=\partial \Omega_{i} \cap \Omega^{\prime}$ are indicated.

Let $S^{\prime}$ and $S^{\prime \prime}$ denote the unions $U S_{i}^{\prime}$ and $U S_{i}^{\prime \prime}$, respectively. It is easy to confirm that $S^{\prime}\left(S^{\prime \prime}\right)$ is the intersection of $\partial \Omega^{\prime}\left(\partial^{i} \Omega^{\prime \prime}\right)$ with ${ }^{i}$ the boundary of the set $\Omega^{\prime \prime} \backslash \Omega^{\prime}\left(\Omega^{\prime} \backslash \Omega^{\prime \prime}\right)$.

Theorem 3.2. Let 1) $\Omega$ and $S_{v}$ be regularly composed of $\Omega^{\prime}, \Omega^{\prime \prime}$ and $S_{v}{ }^{\prime}$ and $S_{v}{ }^{\prime \prime}$, respectively; 2$) \quad \Omega, \Omega_{i}(i=1,2, \ldots, N)$ are strictly Lipschitzian domains, the boundary of the domain $\Omega_{i}$ contains a certain non-empty set $U_{i}, U_{i} \subset S_{q}$ in open $\partial \Omega_{i} ; 3$ ) the following relationships are valid

$$
\begin{align*}
& \mathbf{U 1}\left(\Omega^{\prime}, S_{v}{ }^{\prime} \cup S^{\prime}\right)=\mathbf{W}^{1}\left(\Omega^{\prime}, S_{v}^{\prime} \cup S^{\prime}\right)  \tag{3.4}\\
& \mathbf{U}^{1}\left(\Omega^{\prime \prime}, S_{v}^{\prime \prime} \cup S^{\prime \prime}\right)=\mathbf{W}^{1}\left(\Omega^{\prime \prime}, S_{v}^{\prime \prime} \cup S^{\prime \prime}\right)
\end{align*}
$$

Then $\mathbf{U}^{1}\left(\Omega, S_{v}\right)=\mathbf{W}^{1}\left(\Omega, S_{v}\right)$.
Proof. The embedding of $\mathbf{U}^{1}\left(\Omega, S_{v}\right)$ in $W^{1}\left(\Omega, S_{v}\right)$ is evident, Now, let $\mathbf{w}$ belong to $\mathbf{W}^{1}\left(\Omega, S_{v}\right)$; we show that $w$ belongs also to $\mathbf{U}^{1}\left(\Omega, S_{v}\right)$.

It is sufficient to see that $w$ can be represented in the form $\mathbf{w}=\mathbf{w}^{\prime}+\mathbf{w}^{\prime \prime}$, where

$$
\mathbf{w}^{\prime} \in \mathbf{H}^{1}(\Omega), \quad \operatorname{div} \mathbf{w}^{\prime}=0, \quad \mathbf{w}^{\prime} \mid s_{v^{\prime}} \cup \mathcal{s}^{\prime}=0
$$

and $w^{\prime}$ is the continuation to zero of a certain function from $\mathbf{H}^{1}\left(\Omega^{\prime}\right)$ in $\Omega$, while $w^{*}$ possesses analogous properties with the replacement of the (') by ("). Actually, because of the first of the conditions (3.4), for any $\varepsilon>0$ a function $\mathbf{u}^{\prime}$ from $\mathbf{C}^{\infty}\left(\bar{\Omega}^{\prime}\right)$ exists that vanishes is the neighborhood of $\bar{S}_{v}^{\prime} \cup \bar{S}^{\prime}$ in $\overline{\Omega^{\prime}}$ such that

$$
\operatorname{div} u^{\prime}=0, \quad\left\|\mathbf{w}^{\prime}-\mathbf{u}^{\prime}\right\| \boldsymbol{r}^{\prime}\left(\Omega^{\prime}\right)<\varepsilon
$$

Since, as has been remarked above, $S^{\prime}=\partial \Omega^{\prime} \cap \operatorname{Fr}\left(\Omega^{\prime \prime} \backslash \Omega^{\prime}\right)$, then $\mathbf{u}^{\prime}$ vanishes in the neighborhood of this set in $\Omega^{\prime}\left(\operatorname{Fr} M\right.$ is the boundary of the set $M$ in $\left.R^{n}\right)$. Then $\mathbf{u}_{c}^{\prime}$, its continuation to zero in $\Omega^{\prime \prime} \backslash \Omega^{\prime}$ belongs to $C^{\infty} \overline{(\Omega)}$, where div $u_{c}^{\prime}=0$ and as is easily established, $u_{c}^{\prime}$ vanishes in the neighborhood of $\bar{S}_{v}$ in $\bar{\Omega}$. The function $u_{c}{ }^{\prime \prime}$ is constructed analogously. The following properties are then evident for $\mathbf{u}=\mathbf{u}_{\boldsymbol{c}}{ }^{\prime}+\mathbf{u}_{\boldsymbol{c}}{ }^{\prime \prime}$

$$
\begin{aligned}
& \mathbf{u} \in \mathbf{C}^{\infty}(\bar{\Omega}), \quad \operatorname{div} u=0 \\
& \rho\left(\operatorname{supp} \mathbf{u}, \bar{S}_{\bullet}\right)>0, \quad\|\mathbf{w}-\mathbf{u}\| \mathbf{w}^{\mathbf{u}}(\Omega)<2 \varepsilon
\end{aligned}
$$

from which it is seen that welongs to $\mathrm{U}^{1}\left(\Omega, S_{v}\right)$.
We now show that $w$ can be represented in the requisite from $w=w^{\prime}+w^{\prime \prime}$.
We consider first the function $v=a w$. Utilizing the properties of the function $\alpha$ we find that $v$ belongs to $H^{1}(\Omega)$ and is a continuation to zero of a certain function from $H^{1}\left(\Omega^{\prime}\right)$ in $\Omega$. Since $S^{\prime} \subset \operatorname{Fr}\left(\Omega^{\prime \prime} \backslash \Omega^{\prime}\right)$ and $w \mid s_{v}=0$, then $\left.v\right|_{s_{v}} U^{\prime}=0$. Compliance with the solenoidality condition should still be achieved, the function $v$ should be rectified in the domains $\Omega_{i}(i=1,2, \ldots, N)$ since only in them is $\operatorname{div} v \neq 0$.

Let $\Gamma_{i}$ be a neighborhood in $\partial \Omega_{i}$ of the set $S_{i}{ }^{\prime} \cup S_{i}{ }^{\prime \prime} \cup S_{v i}\left(S_{v i}=S_{v} \cap \partial \Omega_{i}\right)$, where $\partial \Omega_{i} \backslash \Gamma_{i}$ contains a certain set open in $\partial \Omega_{i}$ ( $\Gamma_{i}$ exists because of condition 2 of the theorem). Then there is a function

$$
\mathbf{v}_{i} \in \mathbf{H}^{1}\left(\Omega_{i}\right), \quad \operatorname{div} \mathbf{v}_{i}=-\operatorname{div} \mathbf{v},\left.\quad \mathbf{v}_{i}\right|_{r_{i}}=0
$$

Now, let $w_{i}$ be the continuation of $\mathbf{v}_{i}$ to zero in $\Omega$. It is easy to verify that $w_{i} \mid s_{v} \cup S^{\prime} \cup S^{\prime \prime}=$ 0 and then the functions

$$
\mathbf{w}^{\prime}=\alpha \mathbf{w}+\sum_{i=1}^{N} \mathbf{w}_{i}, \quad \mathbf{w}^{\prime \prime}=(1-\alpha) \mathbf{w}-\sum_{i=1}^{N} \mathbf{w}_{i}
$$

possess all the required properties. The theorem is proved.
We note that if $\mathbf{U}^{\mathbf{1}}=\mathbf{W}^{1}$, then evidently $\mathbf{U}^{1}=\overline{\mathbf{V}}^{1}=\mathbf{W}^{\mathbf{1}}$ independently of whether the disappearance of $\mathbf{v}$ from $\mathbf{V}^{\mathbf{x}}$ near or on $S_{v}$ is required in the definition of $\mathbf{V}^{1}$.
4. Stokes formula. Later, as is mentioned in Sect.1, the Stokes formula is to be applied to the field $\tau$ for which not all the first derivatives are generally at least locally summable. In this connection, we consider the space of vector fields on $\Omega$

$$
\mathbf{K}(\Omega)=\left\{\mathbf{u} \in \mathbf{L}_{2}(\Omega): \operatorname{div} \mathbf{u} \in L_{1}(\Omega)\right\}
$$

with the norm

$$
\|\mathbf{u}\|_{\boldsymbol{K}(\Omega)}^{2}=\|\mathbf{u}\|_{L_{2}(\Omega)}^{2}+\|\operatorname{div} \mathbf{u}\|_{L_{x}(\Omega)}^{2}
$$

The space $K(\Omega)$ refers to the class of spaces $H^{M}$ studied in $/ 6 /$, where, however, the question about integration by parts in which we are interested was not examined. The space $K(\Omega)$ is complete, where (for instance, in strictly Lipschitzian domains) $\mathbf{C o}^{\infty}(\bar{\Omega})$ is compact.

Let $\Omega$ be a bounded domain of the class $C^{2}$ in $R^{n}$. Every function $\mathbf{v}$ from $C^{\infty}$ ( $\overline{9}$ ) has a trace $v_{v}=v l_{o \Omega} v$ on $\partial \Omega$ ( $v$ is the unit external normal to $\partial \Omega$ ). It can be considered as an element of the space $H^{-1 / s}(\partial \Omega)=\left(I I^{1 / 2}(\partial \Omega)\right)^{\prime}$, whose action on $w$ from $H^{t / t}(\partial \Omega)$ is given by the relationship

$$
\left\langle v_{v^{\prime}} w\right\rangle=\int_{\partial \Omega} v_{v} w d s
$$

we note that

$$
\begin{equation*}
\left\|v_{v}\right\|_{H^{-1 / \Psi}(\partial \Omega)} \leqslant c\|v\|_{H Y \Omega)} \tag{4.1}
\end{equation*}
$$

where $c$ is independent of $v$. Indeed, we take its continuation $w^{r}$ in $\Omega$ for $w$, as in (2.2). Then from the Stokes formula

$$
\int_{\partial \Omega} v_{v} w d s=\int_{\Omega} w^{c} \operatorname{div} v d x+\int_{\Omega} v \operatorname{grad} \mathbf{w}^{c} d x
$$

(4.1) follows. The completeness of $C^{\infty}(\bar{\Omega})$ in $K(\Omega)$, the estimate (4.1), and the corresponding passage to the limit in the Stokes form now results in the following assertion.

Lemma 4.1. Let $\Omega$ be a bounded domain of the class $C^{1}$ in $R^{n}$. Then the mapping of the trace $\mathbf{u} \rightarrow \mathbf{u}_{v}$ from $\mathbf{K}(\Omega)$ in $H^{-1 / \mathbf{2}}(\partial \Omega)$

$$
\left\langle u_{v}, w\right\rangle=\lim _{n \rightarrow \infty} \int_{o \rho} u_{v}^{(n)} w d s \quad \forall w \in H^{1 / 2}(\partial \Omega)
$$

(where $\left\{\mathbf{u}^{(n)}\right\}$ is any sequence of smooth functions converging to $\mathbf{u}$ in $\left.K(\Omega)\right)$ is linear and continuous. For any $w$ from $H^{1}(\Omega)$ and any $u$ from $K(\Omega)$ the Stokes formula is valid

$$
\int_{\Omega} w \operatorname{div} \mathbf{u} d x=-\int_{\Omega} \mathbf{u g r a d} w d x+\left\langle u_{v},\left.w\right|_{\partial \Omega}\right\rangle
$$

5. Self-equilibrated stress fields in incompressible media. The plan noted in Sect. 1 can now be realized. We first present an assertion about the relation between $\Sigma^{1}$ and $\Sigma^{2}$ in the case $\partial \Omega=S_{v}$, that results directly from results in $/ 2 /$.

Theorem 5.1. (O.A. Ladyzhenskaia and V.A. Solonnikov). Let $\Omega$ be a bounded strictly Lipschitzian domain, $\partial \Omega=S_{0}$. Then for any $\tau$ from $\boldsymbol{\Sigma}^{\mathbf{1}}$ a pressure field $p \in L_{\mathbf{\Omega}}(\Omega)$ exists such that $\tau+p \mathrm{~g}$ belongs to $\boldsymbol{\Sigma}^{\mathbf{2}}$.

Indeed, if $\tau_{i j} \in L_{2}(\Omega)$, then $\tau$ determines a linear continuous functional $f_{\tau}$ in $H_{0}{ }^{1}(\Omega)$

$$
\begin{equation*}
\left\langle\mathbf{f}_{\tau}, \mathbf{u}\right\rangle=-\int_{Q} \tau_{i j} \frac{\partial u_{i}}{\partial x^{i}} d x \quad\left(V \mathbf{u} \in \mathrm{H}_{0}^{\mathrm{i}}(\Omega)\right) \tag{5.1}
\end{equation*}
$$

Then the Stokes problem is uniquely solvable $/ 2 /$, i.e., there is a $\mathbf{v}$ from $\overline{\mathbf{v}}$ such that for any $u \in \mathbb{V}$

$$
\int_{0} \frac{\partial v_{i}}{\partial x^{j}} \frac{\partial u_{i}}{\partial x^{j}} d x=-\left\langle f_{v} ; u\right\rangle
$$

In the case under consideration $\boldsymbol{\tau} \in \boldsymbol{\Sigma}^{\mathbf{1}}$ and, therefore, $\left.\boldsymbol{f}_{\boldsymbol{\tau}}\right|_{\overline{\mathbf{v}}}=0$, hence $\mathbf{v}=0$. Now we apply the Theorem 2.1/2/ to this solution of the Stokes problem: there is a $p$ from $L_{2}(\Omega)$ such that

$$
\int_{\Omega} p \operatorname{div} w d x=\left\langle\mathbf{f}_{\tau}, w\right\rangle \quad \forall w \in H_{0}^{1}(\Omega)
$$

Because of (5.1) this also means that $\tau+p g$ belongs to $\Sigma^{3}$ (since $S_{v}=\partial \Omega$ in the case under consideration and, therefore, $\overline{\mathbf{V}}^{2}=\mathbf{H}_{0}{ }^{1}(\Omega)$ ).

Furthermore, we consider the case of mixed boundary conditions. Let $\partial \Omega \neq S_{v}$ and $\tau$ belong to the set $\boldsymbol{\Sigma}^{\mathbf{1}}=\mathbf{\Sigma}^{1}\left(\Omega, S_{v}\right)$.

First step. Since $\boldsymbol{\Sigma}^{\mathbf{1}}\left(\Omega, S_{v}\right)$ is evidently embedded in $\mathbf{\Sigma}^{\mathbf{1}}(\Omega, \partial \Omega)$, then according to Theorem 5.1 a $p^{0} \in L_{2}(\Omega)$ exists such that for $\tau^{\circ}=\boldsymbol{r}+p^{\circ} \mathrm{g}$ the following relationships are satisfied

$$
\begin{equation*}
\partial \tau_{i j}^{j} \mid \partial x^{j}=0 . \tag{5.2}
\end{equation*}
$$

Second step. By virtue of this latter relationship, the vectors $\boldsymbol{\tau}_{(i)}{ }^{0}(i=1,2, \ldots, n)$ with the components $\left\{\tau_{i 1}{ }^{\circ}, \tau_{i 2}{ }^{\circ}, \ldots, \tau_{i n}{ }^{\circ}\right\}$ belong to the space $\mathbf{K}(\Omega)$. Then in the relationships

$$
\int_{\Omega} \tau_{i j} \frac{\partial v_{i}}{\partial x^{j}} d x=0
$$

(satisfied for every $\mathbf{v}$ from $\overline{\mathbf{V}}^{1}\left(\Omega, S_{v}\right)$ since $\tau^{\circ}$ together with $\tau$ belongs to $\quad \mathbf{\Sigma}^{1}\left(\Omega, S_{v}\right)$ ) the Stokes formula can be used (Lemma 4.1). Taking account of (5.2), we find that for any $v$ from $\overline{\mathbf{V}}{ }^{1}$

$$
\begin{equation*}
\left\langle\gamma,\left.v\right|_{o u \nu}\right\rangle=0 \tag{5.3}
\end{equation*}
$$

where $p$ belongs to $H^{-2 / 2}(\partial \Omega)$ and has the components $\gamma_{i}=\tau_{i(i) v}^{0}$.
Third step. Now, let $\mathbf{u}$ be any field from $\overline{\mathbf{V}}^{2}$, and $\mathbf{u}_{0}$ some field from $\overline{\mathbf{V}}^{2}$ for which

$$
\mathbf{u}_{0} \mid s_{v}=0, \quad \int_{\partial \Omega} u_{0} v d s=1
$$

(there is such a field since $\partial \Omega \neq S_{v}$ ). Then for

$$
\begin{equation*}
\mathbf{v}=\mathbf{u}-\mathbf{u}_{0} \int_{\partial \Omega} \mathbf{u v d s} \tag{5.4}
\end{equation*}
$$

the following relations are satisfied

$$
\begin{equation*}
\mathbf{v} \in \mathbf{H}^{1}(\Omega),\left.\quad \mathbf{v}\right|_{s_{v}}=0, \quad \int_{\partial \Omega} \mathbf{v} v d s=0 \tag{5.5}
\end{equation*}
$$

Furthermore, we consider the field $v_{s}$ that possesses the following properties

$$
\mathbf{v}_{s} \in \mathbf{H}^{1}(\Omega), \quad \operatorname{div} \mathbf{v}_{s}=0,\left.\quad \mathbf{v}_{\varepsilon}\right|_{\partial \Omega}=\left.v\right|_{\partial \Omega}
$$

(because of the conditions (5.5) such a field is in $/ 2 /$ ). We note that $v_{s}$ belongs to $\mathbf{W}^{1}\left(\Omega, S_{\gamma}\right)$. If $W^{1}\left(\Omega, S_{v}\right)$ agrees with $\overline{\mathbf{V}}^{1}\left(\Omega, S_{v}\right)$, then by virtue of (5.3) $\left\langle\gamma,\left.v_{s}\right|_{\left.\sigma_{2}\right\rangle}\right\rangle=0$ or, equivalent$l y,\left\langle\gamma, \quad \mathbf{v} \mid{ }_{\partial \Omega}\right\rangle=0$.

According to (5.4), this means that for any $\mathbf{u}$ from $\overline{\mathbf{V}}^{2}\left(\Omega, S_{v}\right)$

$$
\begin{equation*}
\langle\gamma, \mathbf{u}\rangle=c_{0} \int_{\theta \Omega} \mathbf{u} v d s, \quad c_{0}=\left\langle\gamma, \mathbf{u}_{0} \mid 00\right\rangle \tag{5.6}
\end{equation*}
$$

We set $\boldsymbol{\sigma}=\tau^{\circ}-c_{0} g$. Using the Stokes formula and (5.2), we find that

$$
\int_{\Omega} \sigma_{i j} \frac{\partial u_{i}}{\partial \boldsymbol{x}^{j}} d x=\left\langle\gamma,\left.\mathbf{u}\right|_{\partial \mathbf{\Omega}}\right\rangle-\left\langle c_{0}, \mathbf{v},\left.\mathbf{u}\right|_{\partial \Omega}\right\rangle \forall \mathbf{v} \in \overline{\mathbf{V}}^{2}\left(\Omega, S_{\mathbf{v}}\right)
$$

As follows from (5.6), the right side vanishes here, and therefore, $\boldsymbol{\sigma}=\boldsymbol{\tau}+\left(p^{\circ}-c_{0}\right) \mathbf{g}$ belongs to $\Sigma^{2}\left(\Omega, S_{i}\right)$. The following assertion is thereby proved.

Theorem 5.2. Let $\Omega$ be a bounded domain of class $C^{1} ; S_{q} \neq \varnothing$; $\mathbf{W}^{\mathbf{1}}\left(\Omega, S_{\mathrm{v}}\right)=\mathrm{V}^{\mathbf{1}}\left(\Omega, S_{v}\right)$. Then for any $\tau$ from $\boldsymbol{\Sigma}^{1}\left(\Omega, S_{v}\right)$ there is a pressure field $p \in L_{2}(\Omega)$ such that $\tau+p g$ belongs to $\Sigma^{2}\left(\Omega, S_{v}\right)$.

Remarks. $1^{\circ}$. Sufficient conditions for the agreement between $\mathbf{W}^{\mathbf{1}}$ and $\overline{\mathrm{v}}$ are given by Theorems 3.1 and 3.2.

20 . The pressure field is defined uniquely by the deviator component of $\tau$. More exactly, if $\boldsymbol{\tau}_{1}$ and $\boldsymbol{\tau}_{2}$ belong to $\boldsymbol{\Sigma}^{1}$ and their deviator components agree, but $\boldsymbol{\sigma}_{1}=\boldsymbol{\tau}_{\mathbf{1}}+p_{1} \mathbf{g}$ and $\boldsymbol{\sigma}_{2}=\boldsymbol{\tau}_{2}+p_{2} \mathbf{g}$ belong to $\Sigma^{2}$, then $\sigma_{1}=\sigma_{2}$ for $S_{q} \neq \varnothing$ and $\sigma_{1}-\sigma_{2}=c g$, where $c$ is an arbitrary constant, for $s_{q}-\varnothing$.

Certain problems of the mechanics of incompressible media reduce to the problem of finding a self-equilibrated field of stresses $\sigma$ that satisfies definite conditions. If these conditions do not impose constraints on the spherical component of $\sigma$, then it can generally be eliminated from consideration by comprehending self-equilibration as belonging of the field of stresses $\sigma$ to the set $\Sigma^{1}$. In such a "deviator" problem the spherical component of the required stresses is not determined (we recall that every $\boldsymbol{\tau}$ from $\boldsymbol{\Sigma}^{1}$ is defined to the accuracy of the addition of an arbitrary spherical tensor field).

The solution of the complete problem (in whose formulation the self-equilibration of $\sigma$ is understood as belonging of the $\sigma$ to the set $\boldsymbol{\Sigma}^{2}$ ) is also a solution of the deviator problem. Theorem 5.2 can be used for the reverse comparison of the solution $\tau+p g$ of the total problem to the solution $\tau$, of the deviator problem.

## REFERENCES

1. SEDOV L.I., Mechanics of a Continuous Medium Vol.2, Pergamon Press, Book No. $10994,1966$.
2. LADYZHENSKAIA O.A. and SOLONNIKOV V.A., On a certain vector analysis problems and generalized formulations of boundary value problems for the Navier-Stokes equations. Zapiski Nauchn. Seminarov, Leningrad Sec. Math. Inst. Acad. Sci. USSR, Vol.59, No.9, 1956.
3. de RAHM J., Differential Manifolds /Russian translation/, Izd, inostr. lit., 1956.
4. SOBOLEV S.L., Certain Applications of Functional Analysis in Mathematical Physics. Providence, American Mathematical Society, 1963.
5. SLOBODETSKII L.N., Generalized S.L. Sobolev spaces and their application to boundary value problems for partial differential equations. Uchen. Zap. Leningr. Ped. Inst. im. A.I. Gertsen, Fiz-Matem. Fak., Vol.197, 1958.
6. VOLEVICH L.R. and PANEIAKH B.P., Certain spaces of generalized functions and imbedding theorems. Uspekhi matem. nauk, Vol.20, No.1, 1965.
7. LIONS J.L. and MAGENES E., Problems aux limited nonhomogenes et applications. Dunod, 19681970 (English translation by P. Kenneth, Springer- Grundlehre, 1972-1973).

Translated by M.D.F.


[^0]:    *Prikl.Matem. Mekhan. ,Vol.47,No. 2,pp.228-237,1983

