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STATICALLY ADMISSIBLE STRESS FIELDS IN INCOMPRESSIBLE MEDIA* 

Ia. A KAMRNIARZH 

A set of statically admissible stress fields must often be considered in problemsof 
the mechanics of a continuous medium. In particular, the extremums shouldbe sought 
in this set in conformity with the Castigliano principle for the static limit co- 
efficient of the theory of ideal plasticity. Two different sets of statically ad- 
missible stresses are used for incompressible media. Their interrelation is known 
only for kinematic conditions on the whole boundary of the body. An analogous re- 
lation is established in this paper for the case of mixed boundary conditions, and 
the possibility of its utilization is discussed. 

Let a continuous medium fill the domain Q in ~n(n = 2,3), and let it be subjected to mass 
forces with density f given in Q, and a surface load with density q given on a part S, ofthe 
boundary of the domainQ. Furthermore, let 

s,= acl\s,, s,= aa\S, (0.1) 

where the bar denotes the closure in R", and the velocity is given on S, (for instance, S, 

is clamped). 
A stress field equilibrating the load (f,q) is called statically admissible; the equili- 

brium conditions in the domain Q and on its boundary can be written in the form of equations 
for the principle of virtual velocities /l/ 

5 o.edz-5 fvdz- 1 qvds=O VVEV 

n R % 
(0.2) 

1 
( 

au. aoj 
eij=T Y&+2 1 I i,i=l,2,...,n 

where V is the set of virtual (trial) velocity fields, and zi are Cartesian coordinates in fin. 
For incompressible media there are two natural possibilities for the selectionof V:VI = 

VI(Q, s,) is the set of smooth, i.e., belonging to C"(Q), solenoidal velocity fields that 
vanish near (or on) S, and v*- V(Q,S,) I the set that is defined analogously but without the 
solenoidality requirement. In this connection, the following question occurs. Let a stress 
field T satisfy the equilibrium conditions (0.2) with v = V' (then any stress field T-l-pg 
also satisfies it, where p is an arbitrary pressure field and g is a metric tensor); could a 
pressure field p be found such that r+pg would satisfy the complete equilibrium conditions, 
i.e., (0.2) with V= VP? 

This question was apparently first studied in /2/ in application to hydromechanics pro- 
blems in which the kinematic boundary conditions (aQ= S,) are given on the whole boundary a62 
It turns out that such a pressure field can be found. Another case, of mixed boundary condi- 

tions, is also of interest. It is shown below that a suitable pressure field can be found 

even in this case. The role of this assertion is discussed in Sect.5. 

1. Formulation of the problem. Plan of the solution. Let s (Sij = Sji; Sij E 

L,(Q); i, j = 1, 2,. . ., n) be some stress field satisfying (0.2) with V = V2 and let z be a set 

of stress fields equilibrating the load f = O,q = 0 (such stress fields are called self- 

equilibrating). Then the set of stress fields, statically admissible for the load (I,¶) can 

be represented in the form Z + S. If s1 and s1 are two stress fields equilibrating the load 

(I, 9) 1 then their difference is evidently self-equilibrated, and therefore, E $- 51 = s $- s2. 
The study of the set of staticallyadmi.ssiblestresS fields therefore actually reduces to a 

study of 2. 
In conformity with the two possibilities for the selection of V - Vl(Q,S,) and V*(Q,S,)r 

there are also two sets of self-equilibrated stress fields 
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{a:aij=Oji*OfjEL~(h2) (i,j=1,2,...,n); Se*edZ=O, 
Q 

VeeE(V?} (x=1,2) 

where E(W) is the set of strain rates corresponding to the velocity fields from Vx= VX(~, 

S,). 
It is required to establish that for every r a pressure field p is found from z' in L,(8) 

such that T +pg is in 2%. 
Let us examine a plan for solving this problem by first assuming that the boundary of the 

domain and the initial stress field T are smooth. 

First step. Since r belongs to xl, then the equality, in particular 

s a+ Tij a,j ax= 0 
u 

is satisfied for all smooth solenoidal fields v with compact carriers in n(v E D(a), div v = 

0). 
By virtue of the results in /3j, there follows from this that 

at,,/axj = at/d.2 (1.1) 

where t is a smooth function because of the smoothness of T . then the construc- 
tion terminates here; the desired pressure field is p = -t. 

If asa = s,, 

Second step. Since r"= r- _ ‘tg lies on 21 together with r, then for any v from Vl(v E 

Cm (P), vjsy = 0, div v = 0) 

(1.2) 

Because of (1.1) we have ~-cijO/~xj = 0, then we find from (1.2) by the Stokes formula that 

s yvds=O VVEV'; v* =Zi j"Yj 
(1.3) 

aQ 

(v is the unit external normalto a). 

Third step. 
for which 

Now let u be any field from V2(u= Cm(@,uI.,= 0), and u. some smooth field 

uoIs,,=O, jQeovds= 1 

(such a u is found if S, # 0). 
Then for 

v=u-uug S uvds 
aQ (1.4) 

the following relationships are satisfied 

vIs,=Oo, S vvds = 0 
an (1.5) 

Let us now consider the trace v\aQ. Because of the second of the conditions (1.5) it 
has a smooth solenoidal continuation on 51 - v, from VI. Then it follows from (1.3) 

yv,ds = 0 

which by utilizing (1.4) results in the relationship 

iyuds=co \ vuds VUEP; 
a"n 

co- wads S 
8Q 

(1.6) 
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There remains to set s = r -(t + c&g and to use (1.6) and the Stokes formula toseethat 
for any u from V2 

Therefore,o lies in 2* and the required pressure is p = -(t + co). 
This plan will later be realized under weakened assumptions on the smoothness of &J and 

T. Necessary for this is a certain preparatory operation since the construction produced 
is fraught with a number of difficulties in the unsmooth case. 

Namely, if the field r is not smooth, then even the t occurring in the first step can be 
considered just as a generalized function. This difficulty was overcome in /2/. The results 
obtained in /2/ for hydromechanics problems (in which adz= 8,) carry over automatically to 
the general case for SJ = S, (Theorem 5.1). 

Furthermore, utilization of the Stokes formula is needed in the foundation for unsmooth 
t' This foundation is given in Sect.4. 

Finally, if the boundary a6a is not assumed smooth, then the continuation of v, consid- 
ered in the third step is not generally smooth. In this case it cannot belong to VI, which 
does not, in turn , permit direct utilization of the relationship (1.3) for it in order to ob- 
tain (1.6). Therefore, VI must be expanded to a certain set v1 such that firstly the set of 
self-equilibrated stress fields would remain as before 21 = (E (VI))’ = (E(gl))qj secondly the 
Stokes formula could be applied in (1.2) to derive (1.3) for any v from T1, and thirdly, the 
solenoidal continuation of v1 in the third step would belong to 81. Such an expansion is 
considered in Sect.3. The expansion of the set V2 is examined first in Sect.2. 

2. Trial velocity fields. Since ctj E&(Q) for the stress fields under considera- 
tion, thencompliance with the equilibrium conditions 

s at+ 

52 

Uijazj dx= 0 

for all v from VI (from Ve) is equivalent to satisfying them for all v from 71 (from i=), 
where VI(p) is the closure of V’ (V*) in HI (a) . Here H’(Q) and the H'Ig(aQ) utilized 
later are Sobolev spaces whose properties have been studied well /4- 7/. The closures 71, vz 
turn out to be suitable expansions of V1,V2. 

We also note that the set VP of the trial velocity fields can itself be defined by two 
methods, as all possible smooth velocity fields v in a that vanish on or near 3, or close 
to 3, (the latter means that the distance from the carrier SUPP V to S, is positive). Later, 
not to distinguish these cases, we consider their corresponding sets of self-equilibrated 
stress fields to coincide. Coincidence is assured if U* = nm, where 

U~=U2(n,s,)=[~u&" (~):):P(supPu,S,)>O~le~cn, (2.1) 

W== WZ(Cl,S,)={w~H’(Q):w Is,=O} 

(P (At B) is the distance between the sets A and B in R”). Lemma 2.1 will yield the suffic- 
ient conditions for the equality Uz = W2 which will henceforth be used. 

A certain regularity of m andS,is required for the proof of Lemma 2.1. We will con- 

sider that51 is a bounded domain of class Cl. This means that fi can be covered by a finite 
number of domains ui on which mappings (pi are defined that are continuously differentiableand 
have continuously differentiable inverses. A standard cylinder in Rn is the pattern for the 
domain Ui with the mapping 'pi , and a sphere in Rn-’ is the pattern of Ui n ap (if the inter- 
section is non-empty). Let us note that continuously differentiable functions ai exist in R" 
with carriers in Ui, that accomplish the partition of unity in ~~aiI-,=l. 

We shall call the parts, of the boundary i3Q regular if the'map (Ui,qi) can be selected 
such that the set Gi the complement to the closure of the set vi (Ui n 8,) in R", is the domain 
for each point of the boundary NGI of which a neighborhood U in R"-' and a direction 5 exist 
such that for any sufficiently small shift in the direction f the set Gi fl u willnotemerge 
beyond the limits of the domain Gj. This latter property is satisfied, for instance, for a 

strictly Lipschitzian domain Gi. 

Lemma 2.1. Let Q be a bounded domain of class Cl, and S, the regular partofitsbound- 

ary. Then Us (Q, S,) = W* (Q, S,). 
The embedding of U' in Wp is evident. Moreover, every w from Wa belongs to U". For 

the proof, the traces w&u in H’lr (an) can be approximated by functions ve that vanish on a 



191 

circle in 8R of the set s,. By virtue of the regularity of & for any E>O the estimate 

II f, u < E can be assured for the function fe=wlm-v, in ~'jx(a62). In the domain il of theclass 

C' any function g from A'/:(a62) has the continuation 8" 

gc E H'(R), 6la* = g (2.2) 
Ii& ih~(Q,~ 'llg II”‘/’ 

The function wE = w + (I,)” approximates w 

(Iw - %ll"l(Q)dce 
(C is independent of w) and vanishes in a certain neighborhood (in an) of the set S,. It 

remains to apply the following assertion to we. 

Lemma 2.2. Let S2 be a bounded strictly Lipschitzian domain, S a closed subset in aSa, 

and u a function from H'(<a), whose trace vanishes in a neighborhood S' in &J of the set S. 

Then for any E >0 there exisfs a smooth function ue from Cm(a) which vanishes in a certain 

neighborhood of the set S in Q and which approximates the function u: 

II u -",]k(Q,<e 

By using the partition of Unity, the proof of Lemma 2.2 is reduced to confirming it for 
a star domain relative to a sphere with center at zero. Furthermore, it is sufficient to con- 
sider a suitable continuation uc of the function u and a sequence of averages of the functions 

u,. (u1, (z) = 11~ (A.T), 1, > 1) as h + 1. 
Finally, we note that if U* = W2, then evidently U* = v2=\V independently of whether 

the trial velocity fields should vanish near or on 3, is required in the definition of V". 

3. Solenoidal velocity fields. For solenoidal fields in P we set up the analog to 
Lemma 2.1., i.e., agreement between the sets Ui and W', where 

U'=U'(R,S,)=[{UEC" (~):divu=O,p(s~ppu,S,)>O}]~~~~~ (3.1) 

W~=Wl(~,&)={w~H1(R):divw=O,w]~,=O) 

In the case aB = S, the agreement between Ul and WI is proved in /2/ (Theorem 2.2). 
Utilizing this, we obtain two assertions about the agreement between U' and \I" that cover a 
sufficiently broad class (Q,S,). 

The following auxiliary proposition is used in proving the first. 

Lemma 3.1. Let 56 be a bounded strictly Lipschitzian domain; PC&$ cXJ \P contains 
acertainnon-empty set open in Xl. Then for any function u from H'(Q) with ulr = 0 there 
isa function v from Ip(B) such that 

div v = 0, v Ir = 0 

II u - v nHI(Q,<c I] div" llr, (Q) 
The validity of Lemma 3.1 follows directly from the results /2/. 

Theorem 3.1. Let 1) SJ be a bounded strictly Lipschitzian domain; 2) S, = &J n 6% 
where g' is a strictly Lipschitzian domain not intersecting B (Fig.1); 3) the domain G con- 
taining 5) and Cl' and such that 6 = fi Up' is strictly Lipschitzian; 4) for every function w 
from W"(Q,S,) and for any e>O there is a w, from HI(P) such that 

II w - w, (]E,'(Q)< &, w8]r = o 

where P is a certain neighborhood of S, in a. 
Then 

ul(n,S,) = W'@,S,, 

Remarks lo. This latter assumption is necessary; sufficient conditions for its satis- 
faction are given in Lemma 2.1. 

20. For Se=0 the theorem is proved in /2/, it can henceforth be consideredthat s,+0. 
We recall that conditions (0.1) are assumed satisfied all the time. 

Proof. The embedding of Ul(Q,S,) in W'(P, S,) is evident. Let w now be a function 
from Wl(a,S,); we show that w belongs to Ul(p,S,), 

We first consider the function ~~,whose existence is assured by the assumption 4. Ac- 
cording to Lemma 3.1, a function ve from HI(Q) exists such that 

div v, = 0, vejr = 0 

II we - ve IIA~ ($2) < CC 

(3.2) 
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(c is independent of we). It is later sufficient to confirm that v, can be approximated in 
HI(Q) by a function from Ul(P,S,). 

We construct a solenoidal continuation of the function ve in G that takes on a zero value 
on 8G. To do this we consider first any continuation V, EHl(R") of the function vE iit 
always exists for a strictly Lipschitzian domain Q ). 
a\r and 8?\S, do not intersect, 

We now note that since the compacts 

U(aSa'\S,) in Rn 
then there are nonintersecting neighborhoods u(8Q \I'), 

and a smooth function a finite in R”, which takes onthe value f in [J((~Q 1 

I’) and the value 0 on U(8Sf \S,) . Then we have for the function aV, from Hl(R") 

aV8 Iu(an'-so)=O~ aV,litc=v,l8c (3.3) 

The function u, which agrees with v 8 on B and with aV, on CQ belongs to H'(R*) and is 
a continuation of ve. 

We now consider the function uef = ue IQ' from H'(P). By virtue of the relationships 
(3.3) and (3.2) 

Fig.1 Fig.2 

1 ue’v’ds = 
m 

i u.'v'ds= - 1 v,vds = - s vevds=O 

89 % 8R 

(v, v’ are unit external normals to &a, aQ'). Then there is /2/ a function v,' from H'(!X) 
such that div v,' = 0, ve' 10~ = %'/a~*. 

Let vet be a function in Gthat agrees with vL on Q and with ve’ on 8'. It is easy to 

see that vPE H’(G) is a solenoidal continuation of \ .. on G that has a zero trace on 8G. 

According to Theorem 2.2 from /2/, there then exists for vet an approximating solenoidal field 
from Corn(G). The limitation of this field on Q evidently belongs to Ul(Q, S,) and approxi- 
mates VI in H'(Q), which proves the theorem. 

Even in the smooth case, Theorem 3.1 is not applicable for every Q, S,. For instance, if 

the domain Q on a plane has the shape of a ring, part of the set S, is located on its inner 
circumference, and another part on its outer, then it is impossible to construct a domain 8' 

satisfying the conditions of Theorem 3.1. 
The agreement between U' and WI can be established in this and analogous cases by consid- 

ering P and S, as comprised of certain domains Q', 9" and parts of their boundaries S,‘, S,“. 

Before proving a corresponding assertion, we list the requirements for the construction of a 

composite domain. 
LetQ, Q', g"be bounded domains in R", Q = Q' U Qfl; Q' is not embedded in 8", and P" 

is not embedded in n'; the intersection Q' n 9" consists of a finite number of domains 

Ql(i = I,&. . ., NJ, separated by positive distances; each of the domains 9, Q', Q", Qiis placed 

1ocallyononesideoftheboundary;afunctionafrom Cl(a) exists on H and takes on the value 0 

on Q \,Q' and the value 1 on Q \R". Furthermore, let S,, S,', S," be open subsets in&& a>' 

and XY', respectively; S,' cS,, S," c S,, S, = S,' U S,"; moreover, let S, be contained in 

the union of S,’ with the boundary of the set Q"\Q' and in the union of S," with the bound- 

ary of the set Q'\Q". 
Upon compliance with these conditions, we call Q and S, regularly composed of Q', a" 

and S,', S," respectively. The listed requirements, although they appear awkward, describe a 

simple situation. An example is presented in Fig.2, where two domains n',n' are shadedwith 

different cross-hatchings, S,’ is depicted by a heavy line, and S,"is the dashed boundary. 

Moreover, parts of the boundaries St' = 6'Qi n Q", SI" = ai n Q'are indicated. 

Lets' and S" denote the unions USI' andUS,; respectively. It is easy to confirm that 

S'(S") is the intersection of M'(aiQ")withithe boundary of the Set Q”\O’ (Q’\Q”). 
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Theorem 3.2. Let 1) 0 and S, be regularly composed of Q',Sa' and S,,'and S;, re- 

spectively; 2) B, Qj (i = 1,2,..., N) are strictly Lipschitzian domains, the boundary of the 

domain62rcontains a certain non-empty set Ui, iJi f S, in open &J,; 3) the following re- 

lationships arevalid 

zp (Q’, s,’ u S’) = W’ 62’7 s; u S’) (3.4) 

IJ'(Q",S," u S") = Wl(Q",S," u S") 

Then U1 (Q, S,) = W1 (8, S,). 

Proof. The embedding of UlfQ, S_) in wl(Q, S,) is evident, Now, let w belong to 
WI@, S,,); we show thatw belongs also to Ur (Q, S,). 

It is sufficient to see that w can be represented in the fo&n w = w’+ w”, where 

w'EHl(Q), divw'= 09 W'lSV,USr=O 

andw'is the continuation to zero of a certain function from H'(Q') in Q, while ~“posses- 
ses analogous properties with the replacement of the (') by ("f. Actually, because of the 
first of the conditions (3.4), for any e>O a function u'from Cm(c) exists that vanishes 
is the neighborhood of S,'US' in p such that 

divu'= 0, IIw'-u'IIRL(~,<~ 

Since, as has been remarked above, #' = 362' fl Fr(Q" \ Q'), then U'vanishes in the neigh- 
borhood of this set in h2' (&&I is the boundary of the setMin R'). Then uf', its con- 
tinuation to zero in Q"\Q' belongs to cw @),-where div n,' = 0 and as is easily estab- 
lished, uEf vanishes in the neighborhood of 8, in Q. The function u: is constructed analog- 
ously. The following properties are then evident for u = u: +ue' 

from which it is 
We now show 
We consider 

u&“@), &vu= 0 

seen that wbelongs to Ul(Q, S,). 
thatw can be represented in the requisite from w - w'+w*. 
first the function v = aw. Utilizing the properties of the function a 

we find that v belongs to H'(8) and is a continuation to zero of a certain function from 
H1 (9’) in Sl . Since ,S'CFr(Q"\R') and wb, = 0, then v~_p -0. Compliance with the 
solenoidality condition should still be achieved, the function v should be rectified in the 
domains Qi (i = I, 2, * . ** N) since only in them is divv+O. 

Letrt be a neighborhood in K& 
contains a certain set open in 8Qi 

of the set St' U Si"U S,; (S,i = 0.7, flaQ,)$ where a% \ rt 
(I'i exists because of condition 2 of the theorem) ~ Then 

there is a function 

vI E H'(QJ, div vi = -div v, vlIr+ = 0 

Now, let wi be the continuation of vi 
0 and then the functions 

to zero in $2. Itis easytoverifythat wiIsVus.UF = 

N 

wsr=aw+ Z; wit *=(I -a)w - 
id 

ilwi 

possess all the required properties. The theorem is proved. 
We note that if I_J' = ~1, then evidently ul z til= Wl independently of whether the 

disappearance of v from V1 near or on S, is required in the definition of VI. 

4. Stokes formula. Later, as is mentioned in Sect.1, the Stokes formula is to be 
applied to the field ? for which not all the first derivatives are generally at least locally 
summable. In this connection, we consider the space of vector fields on B 

K (a)= {u E L, (8): div u E& (Q)) 

with the norm 

The space K(Q) refers to the class of spaces UM studied in /6/, where, however, the 
question about integration by parts in which we are interested was not examined. 
K(Q) is complete, where (for instance, 

The space 
in strictly Lipschitzian domains) C-(E) is compact. 
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Let $2 be a bounded domain of the class Cl in in. Every function Y from c=(h) has a 
trace cv = vlenv on as2 (V is the unit external normal to an). It can be considered as 
an element of the space @rfaQ) = (iT'f~(aQj;*, whose action on (u from H"*(~Q) is given by the re- 
lationship 

tv,,w> = f 
u,wds 

a9 

We note that 

II q IIH_t,t(Bn) < cl v ~hiw (4.1) 

where c is independent of Y. Indeed, we take its continuation d in ft for zr, as in (2.2). 
Then from the Stokes formula 

S 
en 
u,tuds=~~'divvds+~ vgradw'dz 

(4.11 follows. The compLeteness of P(P) in K(Q), the estimate 14.11, and the correspond- 
ing passage to the limit in the Stokes form now results in the 

Lemma 4.1. LetQ be a 
trace u +uv from K (62) in 

bounded domain of the class Cl in 
H-'ls (8Q) 

(where {n(")} is any sequence 
tinuous. For any w from Hz 

(u,, w> = lim { up’wds 
n-.m& 

VWEH” (&2) 

of smooth functions converging to 
(@and any u from K (Q) the Stokes 

foll0wi.n~ assertion. - 

R". Then the mapping of the 

u in K(Q)) is linear and con- 
formula is valid 

%wdirudz= -1 u gradwdx+ (u,.,wla~) 
R 

5. Self-equilibrated stress fields in incompressible media. The plan noted in 
Sect.1 can now be realized. We first present an assextion about the relation between Z? and 
z" in the case SQ = S,, that results directly from results in /2/. 

Theorem 5.1. (O.A. Ladyzhenskaia and V-A. Solonnikov). LetD be a bounded strictly 

Lipschitzian domain, ijQ rt S,. Then for any T from x1 a pressure field P E L,(Q) exists such 

that T fpg belongs to ED, 
Indeed, if zllE Le(Q), then 7 determines a linear continuous functional f, in H,l(Q) 

(5.1) 

Then the Stokes problem is uniquely solvable /2/, i.e., there is a V from @ such that 
for any uE~ 

In the case under consideration T E Z' and, therefore, f%i+=O, hence v = 0. Now we 

apply the Theorem 2.1 /2/ to this solution of the Stokes problem: there is a p from L,(Q)such 
that 

S pdivwdz= (f+,w) VWE&' (Q) 
n 

Because of (5.1) this also means that T + pg belongs to 2' (since S, = k3a in the case 
under consideration and, therefore, Tt II &,~(fZ)). 

Furthermore, we consider the case of mixed boundary conditions. Let &2# S, and * be- 

long to the set P = X1(62, 8,). 

First step. Since El@, S,) is evidently embedded in X1(8, aa), then according to 

Theorem 5.1 a ~0s L,(P) exists such that for I" = T + peg the foILowing relationships are 

satisfied 

&TijO@& = 0. (5.2! 



195 

Second step. By virtue of this latter relationship, the vectors r(i~'(i = 1,2,..., n) with 
the components {Q', ~~~0, . . ., s,,O) belong to the space K(Q). Then in the relationships 

p*(Q, SJ since r0 together with 7 belongs to P(Q, SO)) the (satisfied for every v from 
Stokes formula can be used (Lemma 4.1). Taking account of (5.2), we find that 

V 

tv9 v Ien> =o 

for any v from 

(5.3) 

where 0 belongs to H-‘/z(aQ) and has the components yi = Z&V. 

Third step. NOW, letn be any field from @, and uO some field from pz 

ugI$&=O, s &Jvds=l 
AR 

(there is such a field since dQ # S,). Then for 

v=u-uug S uvds 
OP 

the following relations are satisfied 

VEH’(Q), vls, =O, 1 w&=0 
is-l 

for which 

(5.4) 

(5.5) 

Furthermore, we consider the field v, that possesses the following properties 

~,EH'(Q), divv,=o, v,~~~=v~~~ 

(because of the conditions (5.5) such a field is 
If Wl(Q, S,) agrees with in@, S,), then by 

lY, <r, v lea> = 0. 
According to (5.4), this means that for any 

(p,u>=co s uvds, 
.3s 

in /2/j. We note that v,belongsto Wl(Q, S,). 
virtue of (5.3) <v, v,l& = 0 or, equivalent- 

u from V(8, S,) 

co = <v, wl led (5.6) 

We set e = r3 - c,g. Using the Stokes formula and (5.21, we find that 

As follows from (5.6), the right side vanishes here, and therefore, e = 'c + (P" - co) g 
belongs to F(P, S,). The following assertion is thereby proved. 

Theorem 5.2. Let & be a bounded domain of class Cl; S, # 0; \In (Q, S,) = V’ (Sk So). Then 
for any r from xl@, s,) there is a pressure field PEL,(Q) such that T +pg belongs to 
F(Q, S"). 

Remarks. lo. Sufficient conditions for the agreement between W’ and v? are given by 
Theorems 3.1 and 3.2. 

2O. The pressure field is defined uniquely by the deviator component of r. More exactly, 
if r, and rl belong to 9 and their deviator components agree, but (II= r~+p,g and er=~l+pPg 
belong to L*, then (rl = (rz for S,#0 and e1 - 0.2 =cg, where c is an arbitrary constant, 
for s,= 0. 

Certain problems of the mechanics of incompressible media reduce to the problem of find- 
ing a self-equilibrated field of stresses Q that satisfies definite conditions. If these con- 
ditions do not impose constraints on the spherical component of u, then it can generally be 
eliminated from consideration by comprehending self-equilibration as belonging of the field of 
stresses e to the set 2'. In such a "deviator" problem the spherical component of the re- 
quired stresses is not determined (we recall that every T from 2'is defined to the accuracy 
of the addition of an arbitrary spherical tensor field). 

The solution of the complete problem (inwhose formulation the self-equilibration of o is 
understood as belonging of the e to the set F') is also a solution of the deviator problem. 
Theorem 5.2 can be used for the reverse comparison of the solution r7pg of the total 
problem to the solution 'c, of the deviator problem. 
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